Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the Pulse of Mountain Formation in the Andes

04.06.2014

Research Points to a Rapid Surface Uplift of Mountain Ranges

Scientists have long been trying to understand how the Andes and other broad, high-elevation mountain ranges were formed. New research by Carmala Garzione, a professor of earth and environmental sciences at the University of Rochester, and colleagues sheds light on the mystery.


Photo by Carmala Garzione/University of Rochester.

Sedimentary deposits near Cerdas in the Altiplano plateau of Bolivia. These rocks contain ancient soils used to decipher the surface temperature and surface uplift history of the southern Altiplano.

In a paper published in Earth and Planetary Science Letters, Garzione explains that the Altiplano plateau in the central Andes—and most likely the entire mountain range—was formed through a series of rapid growth spurts.

“This study provides increasing evidence that the plateau formed through periodic rapid pulses, not through a continuous, gradual uplift of the surface, as was traditionally thought,” said Garzione. “In geologic terms, rapid means rising one kilometer or more over several millions of years, which is very impressive.”

It’s been understood that the Andes mountain range has been growing as the Nazca oceanic plate slips underneath the South American continental plate, causing the Earth’s crust to shorten (by folding and faulting) and thicken. But that left two questions: How quickly have the Andes risen to their current height, and what was the actual process that enabled their rise?

Several years ago (2006-2008), Garzione and several colleagues provided the first estimates of the timing and rates of the surface uplift of the central Andes (“Mountain Ranges Rise Much More Rapidly than Geologists Expected”) by measuring the ancient surface temperatures and rainfall compositions preserved in the soils of the central Altiplano, a plateau in Bolivia and Peru that sits about 12,000 feet above sea level. Garzione concluded that portions of the dense lower crust and upper mantle that act like an anchor on the base of the crust are periodically detached and sink through the mantle as the thickened continental plate heats up. Detachment of this dense anchor allows the Earth’s low density upper crust to rebound and rise rapidly.

More recently, Garzione and Andrew Leier, an assistant professor of Earth and Ocean Sciences at the University of South Carolina, used a relatively new temperature-recording technique in two separate studies in different regions of the Andes to determine whether pulses of rapid surface uplift are the norm, or the exception, for the formation of mountain ranges like the Andes.

Garzione and Leier (“Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia”) both focused on the bonding behavior of carbon and oxygen isotopes in the mineral calcite that precipitated from rainwater; their results were similar.

Garzione worked in the southern Altiplano, collecting climate records preserved in ancient soils at both low elevations (close to sea level), where temperatures remained warm over the history of the Andes, and at high elevations where temperatures should have cooled as the mountains rose. The calcite found in the soil contains both the lighter isotopes of carbon and oxygen—12C and 16O—as well as the rare heavier isotopes—13C and 18O. Paleo-temperature estimates from calcite rely on the fact that heavy isotopes form stronger bonds.

At lower temperatures, where atoms vibrate more slowly, the heavy isotope 13C-18O bonds would be more difficult to break, resulting in a higher concentration of 13C-18O bonds in calcite, compared to what is found at warmer temperatures. By measuring the abundance of heavy isotope bonds in both low elevation (warm) sites and high elevation (cooler) sites over time, Garzione used the temperature difference between the sites to estimate the elevation of various layers of ancient soils at specific points in time.

She found that the southern Altiplano region rose by about 2.5 kilometers between 16 million and 9 million years ago, which is considered a rapid rate in geologic terms. Garzione speculates that the pulsing action relates to a dense root that grows at the boundary of the lower crust and upper mantle. As the oceanic plate slips under the continental plate, the continental plate shortens and thickens, increasing the pressure on the lower crust. The basaltic composition of the lower crust converts to a very high-density rock called eclogite, which serves as an anchor to the low-density upper crust. As this root is forced deeper into the hotter part of the mantle, it heats to a temperature where it can be rapidly removed (over several million years), resulting in the rapid rise of the mountain range.

“What we are learning is that the Altiplano plateau formed by pulses of rapid surface uplift over several million years, separated by long periods (several tens of million years) of stable elevations,” said Garzione. “We suspect this process is typical of other high-elevation ranges, but more research is needed before we know for certain.”

Peter Iglinski
Senior Press Officer, Science & Public Media
peter.iglinski@rochester.edu
Phone: 585-273-4726
Mobile: 585-764-7002

Peter Iglinski | newswise
Further information:
http://www.rochester.edu

Further reports about: Andes Bolivia Earth calcite dense isotope isotopes mantle soils temperature temperatures

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>