Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tackling the erosion of a special river island

Locke Island is a small island in a bend of the Columbia River in eastern Washington that plays a special role in the culture of the local Indian tribes. Since the 1970s, however, it has been eroding away at a rate that has alarmed tribal leaders.

The island is part of the Hanford Reservation, which is managed by the Department of Energy.

So the DOE has turned to a team of researchers headed by David Furbish, professor of earth and environmental sciences (E&ES) at Vanderbilt, to study the river dynamics in the area to identify the cause of the increase in erosion and provide the scientific basis for evaluating the effectiveness of possible remedial measures.

As part of this effort, E&ES major Grace Loy has been conducting small-scale tests of the river flow around the island using a stream table, and graduate student John Roseberry is incorporating the results of these tests into a more detailed computer simulation. Loy presented the initial results of their study Dec. 16 in a poster paper at the annual meeting of the American Geophysical Union in San Francisco.

Locke Island's difficulties began when the east bank of the river adjacent to it began to collapse. The resulting landslide continued to grow for the next 20 years, increasingly pinching down the channel that flows around that side of the island. Concern over the impact that this was having on the island prompted scientists at DOE's Pacific Northwest National Laboratory to begin monitoring the situation in 1994. According to their records, as much as 120 feet of the island bank facing the landslide eroded away between 1996 to 2006, peaking in 1997 during a period of unusually high river flow. Another episode of erosion took place during high flows in 2002. However, the landslide has not grown since 1998 when ponds on the bluff above thought to be responsible were drained.

"The generally accepted explanation for the increased erosion has been that the narrowing of the channel forced the water flowing through it to speed up significantly and the stronger current wore away the side of the island more rapidly," Loy said. "We were skeptical of this explanation and our analysis suggests that it isn't what happened."

The stream table consists of a straight wooden channel with a large tank of water at one end. A mockup of the island and the landslide sit halfway down. Bright lights and a video camera are aimed down on the channel from above. A test consists of running water at different velocities down the channel and dropping small green beads into the water at the top of the channel. As the beads are carried down the channel their motion is recorded by the video camera. The images are then analyzed by computer to map the velocity of the currents at different locations.

"When we add the landslide, we find that the water builds up in front of the narrow channel and this steers much of the water into the larger channel," Loy said. As a result, instead of flowing at the same speed in the large channel and flowing much more rapidly in the narrow channel, the current in both channels increases slightly compared to what it was before the landslide.

"We predicted this steering effect but it was much larger than we expected in our tests. The flow was about 50/50 between the two channels without the landslide. With the landslide it was as high as 75/25 percent," Loy said.

Furbish cautioned that they cannot yet conclude that this is exactly what is happening on the river: There are certain aspects of the stream-table studies that cannot be scaled up. So they must wait for the completion of the computer simulations expected in the next six months before they can estimate how strong this steering effect is on the river itself.

The Vanderbilt team was recruited for the study by the Consortium for Risk Evaluation with Stakeholder Participation, a multi-university consortium led by Vanderbilt and funded by DOE to work with stakeholder groups to develop cost-effective and politically acceptable methods for cleaning up the nation's nuclear weapons production sites.

"Since I was a boy, I have admired Native Americans," Furbish said. "So it is very exciting to be working on a project that can help them protect land that is special to them."

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at

David F. Salisbury | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>