Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SwRI-led team’s research shows giant asteroids battered early Earth

01.08.2014

A new terrestrial bombardment model developed by an international group of scientists led by Southwest Research Institute (SwRI) indicates that Earth’s surface was heavily reprocessed — or melted, mixed and buried — as a result of giant asteroid impacts more than four billion years ago.

The model, calibrated using existing lunar and terrestrial data, sheds light on the role asteroid collisions played in the geological evolution of the uppermost layers of Earth during the geologic eon call the “Hadean,” or first geologic eon, approximately four to 4.5 billion years ago.


Image Courtesy of Simone Marchi

An artistic conception of the early Earth, showing a surface pummeled by large impacts, resulting in extrusion of deep-seated magma onto the surface. At the same time, the distal portion of the surface could have retained liquid water.

The team, which also included academic and government researchers, published its findings in a paper, “Widespread Mixing and Burial of Earth’s Hadean Crust by Asteroid Impacts,” in the July 31, 2014, issue of the journal Nature.

An artistic conception of the early Earth, showing a surface pummeled by large impacts, resulting in extrusion of deep-seated magma onto the surface. At the same time, the distal portion of the surface could have retained liquid water.

“Prior to approximately four billion years ago, no large region of Earth’s surface could have survived untouched by impacts and their effects,” said Dr. Simone Marchi, lead author of the paper and a planetary scientist in SwRI’s Planetary Science Directorate in Boulder, Colo. “The new picture of the Hadean Earth emerging from this work has important implications for its habitability,” Marchi said.

Large impacts had particularly severe effects on existing ecosystems. Researchers found that on average, Hadean Earth more than four billion years ago could have been hit by one to four impactors that were more than 600 miles wide and capable of global sterilization, and by three to seven impactors more than 300 miles wide and capable of global ocean vaporization.

“During that time, the lag between major collisions was long enough to allow intervals of more clement conditions, at least on a local scale,” Marchi said. “Any life emerging during the Hadean eon likely needed to be resistant to high temperatures and could have survived such a violent period in Earth’s history by thriving in niches deep underground or in the ocean’s crust.”

The research was supported in part by NASA’s Solar System Exploration Research Virtual Institute (SSERVI) at NASA’s Ames Research Center in Moffett Field, Calif.

“A large asteroid impact could have buried a substantial amount of Earth’s crust with impact-generated melt,” said Dr. Yvonne Pendleton, SSERVI director at Ames. “This new model helps explain how repeated asteroid impacts may have buried Earth’s earliest and oldest rocks.”

Terrestrial planet formation models indicate Earth went through a sequence of major growth phases: initially accretion of planetesimals — planetary embryos — over many tens of millions of years; then a giant impact that led to the formation of the Moon; followed by the late bombardment when giant asteroids several tens to hundreds of miles in size periodically hit ancient Earth, dwarfing the one that presumably killed the dinosaurs (estimated to be six miles in size), only 65 million years ago.

Researchers estimate that accretion during the late bombardment contributed less than one percent of Earth’s present-day mass, but the giant asteroid impacts still had a profound effect on the geological evolution of early Earth. Prior to four billion years ago Earth was resurfaced over and over by voluminous, impact-generated melt.

Furthermore, large collisions as late as about four billion years ago may have repeatedly boiled away existing oceans into steamy atmospheres. Despite the heavy bombardment, the findings are compatible with the claim of liquid water on Earth’s surface as early as about 4.3-4.4 billion years ago based on geochemical data.

The new research reveals that asteroidal collisions not only severely altered the geology of the Hadean eon Earth, but also likely played a major role in the evolution of life on early Earth as well.

The team was comprised of Marchi and Dr. William Bottke from SwRI; L. Elkins-Tanton from Carnegie Institution for Science in Washington; M. Bierhaus and K. Wünnemann from the Museum fur Naturkunde in Berlin, Germany; A. Morbidelli from Observatoire de la Côte d’Azur in Nice, France; and D. Kring from the Universities Space Research Association and the Lunar and Planetary Institute in Houston.

SSERVI is a virtual institute that, with international partnerships, brings science and exploration researchers together in a collaborative virtual setting. SSERVI is funded by the Science Mission Directorate and Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington. For more information about SSERVI and selected member teams, visit: http://sservi.nasa.gov.

Editors: An artistic conception of the early Earth is available at: http://www.swri.org/press/2014/hadean-earth.htm.

For more information, contact Joe Fohn, (210) 522-4630, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510.

Joe Fohn | Eurek Alert!
Further information:
http://www.swri.org/9what/releases/2014/hadean-earth.htm#.U9tbBWEcTcs

Further reports about: Earth Exploration Planetary SwRI-led asteroids collisions

More articles from Earth Sciences:

nachricht NASA's Aqua Satellite sees Typhoon Kilo headed west
04.09.2015 | NASA/Goddard Space Flight Center

nachricht NASA shows upper-level westerly winds affecting Tropical Storm Fred
04.09.2015 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Long-sought chiral anomaly detected in crystalline material

04.09.2015 | Materials Sciences

Family tree for orchids explains their astonishing variability

04.09.2015 | Life Sciences

Gone with the wind: A new project focusses on atmospheric input of phosphorus into the Baltic Sea

04.09.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>