Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss Scientists measure glacial melting with light

03.12.2009
The glaciers in Switzerland have been melting for years. Researchers at the University of Zurich now want to know more precisely how much ice is being lost - and they are using the aid of light.

Changes in the thickness of a glacier are traditionally measured by means of wooden poles and snow-shovels. Those methods are inexpensive and can be carried out to determine the annual or even seasonal result at individual locations.


The Findel glacier lit up, superimposed with changes in the thickness up to 2009. The colors green to red represent the loss of ice, blue shows increased thickness.


Virtual, three-dimensional view of the Findel glacier near Zermatt, based on laser data from 2005, superimposed with an aerial photograph from 2006. swissphoto, with approval from swisstopo BA091673

It is, however, difficult to draw conclusions about changes in the thickness of an entire glacier or all the glaciers in the region merely on the basis of those positional measurements. The scientists now want to overcome that disadvantage of direct field measurement by applying laser technology.

Philip Jörg, a Ph.D candidate involved in this project, explains how it works: "A strongly bundled beam of light is shot from an aircraft and the time is measured that the light needs to reach the surface of the ice and bounce back to the aircraft. From this so-called "run time", the distance from the plane to the glacier can be precisely determined to within just a few centimetres". The laser data and the exact location and position of the aircraft give rise to a highly precise, three-dimensional picture of the glacier's surface.

49 million cubic metres of ice lost

Researchers at the University of Zurich carried out a corresponding campaign in October of this year with a high-resolution laser scanner at the Findel Glacier close to Zermatt. The surface model that was created was compared with the results of a first flight over the glacier in the year 2005 and now enables a conclusion on the changes in thickness and volume of the entire glacier. In those four years, the Findel Glacier has lost almost 3.5 metres of average ice thickness, and as much as 25 to 30 metres at its tongue. Overall, the glacier has lost around 49 million cubic metres of ice. If that volume of ice were melted and emptied into the Lake of Zurich, the water level of the lake would rise by about half a metre.

The next flight is planned for the forthcoming spring. The researchers anticipate new findings with regard to the spatial distribution of the winter snow coverage and its characteristics in terms of water content and reflectance. "While the politicians will be in Copenhagen in the next few days, debating a continuation of the Kyoto Protocol with specific climate targets, we are already working on the basic data of tomorrow", says Michael Zemp, the head of the project and a glaciologist at the University of Zurich.

Cooperation partners:
The research project 'Laser Scanning Experiment Oberwallis' is being carried out jointly by the Glaciology and Remote Sensing units of the University of Zurich's Geographical Department. The project will continue until 2012 and is supported by the Swiss energy utility Axpo. The laserscanning flights are carried out in cooperation with BSF Swissphoto.
Contact:
Michael Zemp, Department of Geography, University of Zurich
Tel. 0041 44 635 51 39
E-Mail: michael.zemp@geo.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>