Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss Scientists measure glacial melting with light

03.12.2009
The glaciers in Switzerland have been melting for years. Researchers at the University of Zurich now want to know more precisely how much ice is being lost - and they are using the aid of light.

Changes in the thickness of a glacier are traditionally measured by means of wooden poles and snow-shovels. Those methods are inexpensive and can be carried out to determine the annual or even seasonal result at individual locations.


The Findel glacier lit up, superimposed with changes in the thickness up to 2009. The colors green to red represent the loss of ice, blue shows increased thickness.


Virtual, three-dimensional view of the Findel glacier near Zermatt, based on laser data from 2005, superimposed with an aerial photograph from 2006. swissphoto, with approval from swisstopo BA091673

It is, however, difficult to draw conclusions about changes in the thickness of an entire glacier or all the glaciers in the region merely on the basis of those positional measurements. The scientists now want to overcome that disadvantage of direct field measurement by applying laser technology.

Philip Jörg, a Ph.D candidate involved in this project, explains how it works: "A strongly bundled beam of light is shot from an aircraft and the time is measured that the light needs to reach the surface of the ice and bounce back to the aircraft. From this so-called "run time", the distance from the plane to the glacier can be precisely determined to within just a few centimetres". The laser data and the exact location and position of the aircraft give rise to a highly precise, three-dimensional picture of the glacier's surface.

49 million cubic metres of ice lost

Researchers at the University of Zurich carried out a corresponding campaign in October of this year with a high-resolution laser scanner at the Findel Glacier close to Zermatt. The surface model that was created was compared with the results of a first flight over the glacier in the year 2005 and now enables a conclusion on the changes in thickness and volume of the entire glacier. In those four years, the Findel Glacier has lost almost 3.5 metres of average ice thickness, and as much as 25 to 30 metres at its tongue. Overall, the glacier has lost around 49 million cubic metres of ice. If that volume of ice were melted and emptied into the Lake of Zurich, the water level of the lake would rise by about half a metre.

The next flight is planned for the forthcoming spring. The researchers anticipate new findings with regard to the spatial distribution of the winter snow coverage and its characteristics in terms of water content and reflectance. "While the politicians will be in Copenhagen in the next few days, debating a continuation of the Kyoto Protocol with specific climate targets, we are already working on the basic data of tomorrow", says Michael Zemp, the head of the project and a glaciologist at the University of Zurich.

Cooperation partners:
The research project 'Laser Scanning Experiment Oberwallis' is being carried out jointly by the Glaciology and Remote Sensing units of the University of Zurich's Geographical Department. The project will continue until 2012 and is supported by the Swiss energy utility Axpo. The laserscanning flights are carried out in cooperation with BSF Swissphoto.
Contact:
Michael Zemp, Department of Geography, University of Zurich
Tel. 0041 44 635 51 39
E-Mail: michael.zemp@geo.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>