Surviving mass extinction by leading a double life

Now, planktonic foraminifera — single-celled shell building members of the marine microplankton community — have given up a secret of their very own.

A team of experts, including scientists from The University of Nottingham, have presented remarkable evidence that planktonic foraminifera may have survived mass extinction by taking refuge on the sea floor.

Dr Chris Wade from the Institute of Genetics, said: “Using genetic data we have been able to prove that the planktonic species Streptochilus globigerus and the benthic — sediment living — foraminiferan Bolivina variabilis are one and the same biological species. Moreover, geochemical evidence shows that this species actively grows within the open-ocean surface waters, thus occupying both planktonic and benthic domains. Such ecologically-flexible species are eminently suited to the recolonisation of the extinction-susceptible planktonic domain following mass extinctions events, such as the end-Cretaceous event.”

It had been thought that all modern planktic foraminifers were descended from the few lucky survivors of the meteor impact that wiped out the dinosaurs and 65 to 70 per cent of life on earth 65 million years ago. However, this might not be the case.

Dr Wade together with PhD student Heidi Seears have shown that live specimens of the planktonic species Streptochilus globigerus, collected 600 miles offshore in the middle of the Arabian Sea, are genetically identical to the benthic species Bolivina variabilis, found off the coast of Kenya.

Their surprising discovery suggests that planktonic foraminifera may have survived the end Cretaceous mass-extinction by abandoning the poisonous oceans for a refuge in the relative safety of the sea-floor. When the oceans returned to normal, the survivors were able to recolonise the ocean surface once more.

The research, carried out in collaboration with the University of Edinburgh, has been published in the Journal Proceedings of the National Academy of Sciences (PNAS).

Dr Kate Darling, from the University of Edinburgh, said: “If some species can switch between free-swimming and bottom-dwelling lifestyles, then it's possible that most planktic foraminifers may have survived the late Cretaceous extinction in the sediment, not in the plankton. It seems likely that the foraminifer species which had the ability to occupy both habitats survived on the sea-floor, avoiding the meteor impact catastrophe in the oceans above.

Media Contact

Dr. Chris Wade EurekAlert!

More Information:

http://www.nottingham.ac.uk

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors