Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprises in the South polar vortex in Venus’ atmosphere

25.03.2013
The astronomers in the UPV/EHU’s Planetary Science Group have published, on-line in the prestigious journal Nature Geoscience, a study of the atmospheric vortex of the south pole of Venus, a huge whirlwind the size of Europe.
In the atmosphere there are two main cloud layers separated by a distance of 20km. The UPV/EHU astronomers have been closely monitoring the movement of the vortex on both levels, and have been able to confirm the erratic nature of this movement.

“We knew it was a long-term vortex; we also knew that it changes shape every day. But we thought that the centres of the vortex at different altitudes formed only a single tube, but that is not so. Each centre goes its own way, yet the global structure of the atmospheric vortex does not disintegrate," explains Itziar Garate-Lopez, head researcher and member of the UPV/EHU's Planetary Science Group.

In fact, the centres of rotation of the upper and lower vortex rarely coincide in their position with respect to the vertical, and as the researchers have published in their paper, “they form a constantly evolving permanent structure” on the surface of Venus.

Long-term vortices are a frequent phenomenon in the atmospheres of fast rotating planets, like Jupiter and Saturn, for example. Venus rotates slowly, yet it has permanent vortices in its atmosphere at both poles. What is more, the rotation speed of the atmosphere is much greater than that of the planet. “We’ve known for a long time that the atmosphere of Venus rotates 60 times faster than the planet itself, but we didn’t know why. The difference is huge; that is why it’s called super-rotation. And we‘ve no idea how it started or how it keeps going.”

The permanence of the Venus vortices contrasts with the case of the Earth. “On the Earth there are seasonal effects and temperature differences between the continental zones and the oceans that create suitable conditions for the formation and dispersal of polar vortices. On Venus there are no oceans or seasons, and so the polar atmosphere behaves very differently,” says Garate-Lopez.

Looking at the poles of Venus

The UPV/EHU group has been able to monitor the evolution of the south pole vortex thanks to one of the instruments on board the European Space Agency’s Venus Express spacecraft, which has been orbiting our neighbouring planet since April 2006. “The orbit of this craft is very elliptical: it gets very close to the North pole and South pole, yet the planet is observed from a greater distance, which allows a more global vision to be obtained. This is what we needed for our study, a more complete view of the vortex and at a lower speed, so that the instrument we used could capture the images we needed." Also needed was a more extended view offering a detailed view of the planet's south pole, whereas the north pole is observed from much shorter distances, which prevents it from being observed globally," explains Garate-Lopez.

The UPV/EHU astronomers have been using the VIRTIS-M infrared camera on the Venus Express probe and have been analysing data obtained in the course of 169 earth days, and in particular, they have been studying in great detail the data on the 25 most representative orbits.

Garate-Lopez explains that this is no straightforward task: “This camera doesn’t take individual photos like an ordinary camera, it divides the light into different wave lengths that enable various vertical layers of the planet’s atmosphere to be observed simultaneously. Besides, we have compared images separated by one-hour intervals and this has enabled us to monitor the speed at which the clouds move,” says Garate-Lopez.

The UPV/EHU astronomers Agustín Sánchez-Lavega, director the Planetary Science Group, Ricardo Hueso and Itziar Garate-Lopez have been working in collaboration with experts from the Astrophysics Institute of Andalusia (CSIC-Spanish Scientific Research Council), the Astronomical Observatory of Lisbon (CAAUL), the Paris Observatory and the Institute of Space Astrophysics and Cosmic Physics in Rome.

Astrofisika, Astronautika, Astronomia, UnibertsitateakGo to top of page
NotesGarate-Lopez, I., R. Hueso, A. Sánchez-Lavega, J. Peralta, G. Piccioni, P. Drossart. A chaotic long-lived vortex at the southern pole of Venus. Nature Geoscience, 24 March 2013, DOI: 10.1038/NGEO1764.

Aitziber Lasa | EurekAlert!
Further information:
http://www.ehu.es
http://www.elhuyar.com

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>