Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprises in the South polar vortex in Venus’ atmosphere

25.03.2013
The astronomers in the UPV/EHU’s Planetary Science Group have published, on-line in the prestigious journal Nature Geoscience, a study of the atmospheric vortex of the south pole of Venus, a huge whirlwind the size of Europe.
In the atmosphere there are two main cloud layers separated by a distance of 20km. The UPV/EHU astronomers have been closely monitoring the movement of the vortex on both levels, and have been able to confirm the erratic nature of this movement.

“We knew it was a long-term vortex; we also knew that it changes shape every day. But we thought that the centres of the vortex at different altitudes formed only a single tube, but that is not so. Each centre goes its own way, yet the global structure of the atmospheric vortex does not disintegrate," explains Itziar Garate-Lopez, head researcher and member of the UPV/EHU's Planetary Science Group.

In fact, the centres of rotation of the upper and lower vortex rarely coincide in their position with respect to the vertical, and as the researchers have published in their paper, “they form a constantly evolving permanent structure” on the surface of Venus.

Long-term vortices are a frequent phenomenon in the atmospheres of fast rotating planets, like Jupiter and Saturn, for example. Venus rotates slowly, yet it has permanent vortices in its atmosphere at both poles. What is more, the rotation speed of the atmosphere is much greater than that of the planet. “We’ve known for a long time that the atmosphere of Venus rotates 60 times faster than the planet itself, but we didn’t know why. The difference is huge; that is why it’s called super-rotation. And we‘ve no idea how it started or how it keeps going.”

The permanence of the Venus vortices contrasts with the case of the Earth. “On the Earth there are seasonal effects and temperature differences between the continental zones and the oceans that create suitable conditions for the formation and dispersal of polar vortices. On Venus there are no oceans or seasons, and so the polar atmosphere behaves very differently,” says Garate-Lopez.

Looking at the poles of Venus

The UPV/EHU group has been able to monitor the evolution of the south pole vortex thanks to one of the instruments on board the European Space Agency’s Venus Express spacecraft, which has been orbiting our neighbouring planet since April 2006. “The orbit of this craft is very elliptical: it gets very close to the North pole and South pole, yet the planet is observed from a greater distance, which allows a more global vision to be obtained. This is what we needed for our study, a more complete view of the vortex and at a lower speed, so that the instrument we used could capture the images we needed." Also needed was a more extended view offering a detailed view of the planet's south pole, whereas the north pole is observed from much shorter distances, which prevents it from being observed globally," explains Garate-Lopez.

The UPV/EHU astronomers have been using the VIRTIS-M infrared camera on the Venus Express probe and have been analysing data obtained in the course of 169 earth days, and in particular, they have been studying in great detail the data on the 25 most representative orbits.

Garate-Lopez explains that this is no straightforward task: “This camera doesn’t take individual photos like an ordinary camera, it divides the light into different wave lengths that enable various vertical layers of the planet’s atmosphere to be observed simultaneously. Besides, we have compared images separated by one-hour intervals and this has enabled us to monitor the speed at which the clouds move,” says Garate-Lopez.

The UPV/EHU astronomers Agustín Sánchez-Lavega, director the Planetary Science Group, Ricardo Hueso and Itziar Garate-Lopez have been working in collaboration with experts from the Astrophysics Institute of Andalusia (CSIC-Spanish Scientific Research Council), the Astronomical Observatory of Lisbon (CAAUL), the Paris Observatory and the Institute of Space Astrophysics and Cosmic Physics in Rome.

Astrofisika, Astronautika, Astronomia, UnibertsitateakGo to top of page
NotesGarate-Lopez, I., R. Hueso, A. Sánchez-Lavega, J. Peralta, G. Piccioni, P. Drossart. A chaotic long-lived vortex at the southern pole of Venus. Nature Geoscience, 24 March 2013, DOI: 10.1038/NGEO1764.

Aitziber Lasa | EurekAlert!
Further information:
http://www.ehu.es
http://www.elhuyar.com

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>