Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprise: Typhoons trigger slow earthquakes

12.06.2009
Scientists have made the surprising finding that typhoons trigger slow earthquakes, at least in eastern Taiwan.

Slow earthquakes are non-violent fault slippage events that take hours or days instead of a few brutal seconds to minutes to release their potent energy. The researchers discuss their data in a study published the June 11, issue of Nature.

"From 2002 to 2007 we monitored deformation in eastern Taiwan using three highly sensitive borehole strainmeters installed 650 to 870 feet (200-270 meters) deep. These devices detect otherwise imperceptible movements and distortions of rock," explained coauthor Selwyn Sacks of Carnegie's Department of Terrestrial Magnetism. "We also measured atmospheric pressure changes, because they usually produce proportional changes in strain, which we can then remove."

Taiwan has frequent typhoons in the second half of each year but is typhoon free during the first 4 months. During the five-year study period, the researchers, including lead author Chiching Liu (Academia Sinica, Taiwan), identified 20 slow earthquakes that each lasted from hours to more than a day. The scientists did not detect any slow events during the typhoon-free season. Eleven of the 20 slow earthquakes coincided with typhoons. Those 11 were also stronger and characterized by more complex waveforms than the other slow events.

"These data are unequivocal in identifying typhoons as triggers of these slow quakes. The probability that they coincide by chance is vanishingly small," remarked coauthor Alan Linde, also of Carnegie.

How does the low pressure trigger the slow quakes? The typhoon reduces atmospheric pressure on land in this region, but does not affect conditions at the ocean bottom, because water moves into the area and equalizes pressure. The reduction in pressure above one side of an obliquely dipping fault tends to unclamp it. "This fault experiences more or less constant strain and stress buildup," said Linde. "If it's close to failure, the small perturbation due to the low pressure of the typhoon can push it over the failure limit; if there is no typhoon, stress will continue to accumulate until it fails without the need for a trigger."

"It's surprising that this area of the globe has had no great earthquakes and relatively few large earthquakes," Linde remarked. "By comparison, the Nankai Trough in southwestern Japan, has a plate convergence rate about 4 centimeters per year, and this causes a magnitude 8 earthquake every 100 to 150 years. But the activity in southern Taiwan comes from the convergence of same two plates, and there the Philippine Sea Plate pushes against the Eurasian Plate at a rate twice that for Nankai."

The researchers speculate that the reason devastating earthquakes are rare in eastern Taiwan is because the slow quakes act as valves, releasing the stress frequently along a small section of the fault, eliminating the situation where a long segment sustains continuous high stresses until it ruptures in a single great earthquake. The group is now expanding their instrumentation and monitoring for this research.

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Alan Linde | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>