Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprise: Typhoons trigger slow earthquakes

12.06.2009
Scientists have made the surprising finding that typhoons trigger slow earthquakes, at least in eastern Taiwan.

Slow earthquakes are non-violent fault slippage events that take hours or days instead of a few brutal seconds to minutes to release their potent energy. The researchers discuss their data in a study published the June 11, issue of Nature.

"From 2002 to 2007 we monitored deformation in eastern Taiwan using three highly sensitive borehole strainmeters installed 650 to 870 feet (200-270 meters) deep. These devices detect otherwise imperceptible movements and distortions of rock," explained coauthor Selwyn Sacks of Carnegie's Department of Terrestrial Magnetism. "We also measured atmospheric pressure changes, because they usually produce proportional changes in strain, which we can then remove."

Taiwan has frequent typhoons in the second half of each year but is typhoon free during the first 4 months. During the five-year study period, the researchers, including lead author Chiching Liu (Academia Sinica, Taiwan), identified 20 slow earthquakes that each lasted from hours to more than a day. The scientists did not detect any slow events during the typhoon-free season. Eleven of the 20 slow earthquakes coincided with typhoons. Those 11 were also stronger and characterized by more complex waveforms than the other slow events.

"These data are unequivocal in identifying typhoons as triggers of these slow quakes. The probability that they coincide by chance is vanishingly small," remarked coauthor Alan Linde, also of Carnegie.

How does the low pressure trigger the slow quakes? The typhoon reduces atmospheric pressure on land in this region, but does not affect conditions at the ocean bottom, because water moves into the area and equalizes pressure. The reduction in pressure above one side of an obliquely dipping fault tends to unclamp it. "This fault experiences more or less constant strain and stress buildup," said Linde. "If it's close to failure, the small perturbation due to the low pressure of the typhoon can push it over the failure limit; if there is no typhoon, stress will continue to accumulate until it fails without the need for a trigger."

"It's surprising that this area of the globe has had no great earthquakes and relatively few large earthquakes," Linde remarked. "By comparison, the Nankai Trough in southwestern Japan, has a plate convergence rate about 4 centimeters per year, and this causes a magnitude 8 earthquake every 100 to 150 years. But the activity in southern Taiwan comes from the convergence of same two plates, and there the Philippine Sea Plate pushes against the Eurasian Plate at a rate twice that for Nankai."

The researchers speculate that the reason devastating earthquakes are rare in eastern Taiwan is because the slow quakes act as valves, releasing the stress frequently along a small section of the fault, eliminating the situation where a long segment sustains continuous high stresses until it ruptures in a single great earthquake. The group is now expanding their instrumentation and monitoring for this research.

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Alan Linde | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>