Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface of Titan Sea is mirror smooth, Stanford scientists find

20.03.2014

New radar measurements of an enormous sea on Titan offer insights into the weather patterns and landscape composition of the Saturnian moon.

The measurements, made in 2013 by NASA's Cassini spacecraft, reveal that the surface of Ligeia Mare, Titan's second largest sea, possesses a mirror-like smoothness, possibly due to a lack of winds.


This false-color image of the surface of Titan was made using radar measurements made by NASA's Cassini spacecraft. The spacecraft revealed that the surface of Ligeia Mare, Titan's second largest lake, is unusually still, most likely due to a lack of winds at the time of observation.

Credit: Courtesy of Howard Zebker

"If you could look out on this sea, it would be really still. It would just be a totally glassy surface," said Howard Zebker, professor of geophysics and of electrical engineering at Stanford who is the lead author of a new study detailing the research.

The findings, recently published online in Geophysical Research Letters, also indicate that the solid terrain surrounding the sea is likely made of solid organic materials and not frozen water.

Saturn's second largest moon, Titan has a dense, planet-like atmosphere and large seas made of methane and ethane. Measuring roughly 260 miles (420 km) by 217 miles (350 km), Ligeia Mare is larger than Lake Superior on Earth. "Titan is the best analog that we have in the solar system to a body like the Earth because it is the only other body that we know of that has a complex cycle of solid, liquid, and gas constituents," Zebker said.

Titan's thick cloud cover makes it difficult for Cassini to obtain clear optical images of its surface, so scientists must rely on radar, which can see through the clouds, instead of a camera.

To paint a radar picture of Ligeia Mare, Cassini bounced radio waves off the sea's surface and then analyzed the echo. The strength of the reflected signal indicated how much wave action was happening on the sea. To understand why, Zebker said, imagine sunlight reflecting off of a lake on Earth. "If the lake were really flat, it would act as a perfect mirror and you would have an extremely bright image of the sun," he said. "But if you ruffle up the surface of the sea, the light gets scattered in a lot of directions, and the reflection would be much dimmer. We did the same thing with radar on Titan."

The radar measurements suggest the surface of Ligeia Mare is eerily still. "Cassini's radar sensitivity in this experiment is one millimeter, so that means if there are waves on Ligeia Mare, they're smaller than one millimeter. That's really, really smooth," Zebker said.

One possible explanation for the sea's calmness is that no winds happened to be blowing across that region of the moon when Cassini made its flyby. Another possibility is that a thin layer of some material is suppressing wave action. "For example, on Earth, if you put oil on top of a sea, you suppress a lot of small waves," Zebker said.

Cassini also measured microwave radiation emitted by the materials that make up Titan's surface. By analyzing those measurements, and accounting for factors such as temperature and pressure, Zebker's team confirmed previous findings that the terrain around Ligeia Mare is composed of solid organic material, likely the same methane and ethane that make up the sea. "Like water on Earth, methane on Titan can exists as a solid, a liquid, and a gas all at once," Zebker said.

Titan's similarities to Earth make it a good model for our own planet's early evolution, Zebker said. "Titan is different in the details from Earth, but because there is global circulation happening, the big picture is the same," he added. "Seeing something in two very different environments could help reveal the overall guiding principles for the evolution of planetary bodies, and help explain why Earth developed life and Titan didn't."

###

Ker Than is associate director of communications for the Stanford School of Earth Sciences.

Ker Than, Stanford | EurekAlert!

Further reports about: Cassini Earth Surface Titan ethane materials measurements mirror smooth smoothness terrain waves winds

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>