Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surf's up: New research provides precise way to monitor ocean wave behavior, shore impacts

31.01.2011
Engineers have created a new type of “stereo vision” to use in studying ocean waves as they pound against the shore, providing a better way to understand and monitor this violent, ever-changing environment.

The approach, which uses two video cameras to feed data into an advanced computer system, can observe large areas of ocean waves in real time and help explain what they are doing and why, scientists say.

The system may be of particular value as climate change and rising sea levels pose additional challenges to vulnerable shorelines around the world, threatened by coastal erosion. The technology should be comparatively simple and inexpensive to implement.

“An ocean wave crashing on shore is actually the end of a long story that usually begins thousands of miles away, formed by wind and storms,” said David Hill, an associate professor of coastal and ocean engineering at Oregon State University. “We’re trying to achieve with cameras and a computer what human eyes and the brain do automatically – see the way that near-shore waves grow, change direction and collapse as they move over a seafloor that changes depth constantly.”

This is the first attempt to use stereo optical imaging in a marine field setting on such a large scale, Hill said, and offers the potential to provide a constant and scientifically accurate understanding of what is going on in the surf zone. It’s also a form of remote sensing that doesn’t require placement of instruments in the pounding surf environment.

Applications could range from analyzing wave impacts to locating shoreline structures, building ocean structures, assisting the shipping industry, improving boating safety, reducing property damage or, literally, providing some great detail to surfers about when the “surf’s up.”

Only in recent years, Hill said, have extraordinary advances in computer science made it possible to incorporate and make sense out of what a dynamic marine environment is doing at the moment it happens.

“A wave is actually a pretty difficult thing for a computer to see and understand,” Hill said. “Some things like speed are fairly easy to measure, but subtle changes in height, shape and motion as the waves interact with a changing ocean bottom, wind and sediments are much more difficult.”

Researchers at OSU and the Technical University of Delft in The Netherlands made important recent advances toward this goal, which were reported in Coastal Engineering, a professional journal.

Other studies at OSU have documented that ocean wave heights and coastal erosion in the Pacific Northwest are increasing in recent decades, adding to the need for a better understanding of those waves when they hit shore.

One study just last year concluded that the highest offshore waves may be as much as 46 feet, up from estimates of only 33 feet that were made as recently as 1996, and a 40 percent increase.

About the OSU College of Engineering: The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

David Hill | EurekAlert!
Further information:
http://www.oregonstate.edu
http://oregonstate.edu/ua/ncs/archives/2011/jan/surf’s-new-research-provides-precise-way-monitor-ocean-wave-behavior-shore-impacts

Further reports about: Ferchau Engineering OSU coastal erosion human eye sea level video camera

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>