Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supervolcanoes: Not a threat for 2012

16.11.2011
The geological record holds clues that throughout Earth's 4.5-billion-year lifetime massive supervolcanoes, far larger than Mount St. Helens or Mount Pinatubo, have erupted. However, despite the claims of those who fear 2012, there's no evidence that such a supereruption is imminent.

What exactly is a "supervolcano" or a "supereruption?" Both terms are fairly new and favored by the media more than scientists, but geologists have begun to use them in recent years to refer to explosive volcanic eruptions that eject about ten thousand times the quantity of magma and ash that Mount St. Helens, one of the most explosive eruptions in recent years, expelled.


In Yellowstone, the rim of a supervolcano caldera is visible in the distance. Credit: National Park Service

It's hard to comprehend an eruption of that scope, but Earth's surface has preserved distinctive clues of many massive supereruptions. Expansive layers of ash blanket large portions of many continents. And huge hollowed-out calderas – craters that can be as big as 60 miles (100 km) across left when a volcano collapses after emptying its entire magma chamber at once – serve as visceral reminders of past supereruptions in Indonesia, New Zealand, the United States, and Chile.

The eruption of these prehistoric supervolcanoes has affected massive areas. The magma flow of Mount Toba in Sumutra, which erupted some 74,000 years ago in what was likely the largest eruption that has ever occurred, released a staggering 700 cubic miles (2,800 cubic km) of magma and left a thick layer of ash over all of South Asia. For comparison, the quantity of magma erupted from Indonesia's Mount Krakatau in 1883, one of the largest eruptions in recorded history, was about 3 cubic miles (12 cubic km).

Volcanologists continue to seek answers to many unanswered questions about supervolcanoes. For example, what triggers their eruptions, and why do they fail to erupt until their magma chambers achieve such enormous proportions? How does the composition compare to more familiar eruptions? And how can we predict when the next supervolcano will erupt?

But there's one thing that all experts agree on: supereruptions, though they occur, are exceedingly rare and the odds that one will occur in the lifetime of anybody reading this article are vanishingly small.

The most recent supereruption occurred in New Zealand about 26,000 years ago. The next most recent: the cataclysmic eruption of Mount Toba happened about 50,000 years earlier. In all, geologists have identified the remnant of about 50 supereruptions, though teams are in the process of evaluating a number of other possibilities.

That may sound like a large number. However, when one group of scientists used the count of all the known supervolcanoes to calculate the approximate frequency of eruptions, they found that only 1.4 supereruptions occur every one million years.

That's not to say that a supervolcano will occur every million years at regular intervals. Many millions of years could pass without a supereruption or many supervolcanoes could erupt in just a short period. The geological record does suggest supervolcanoes occur in clusters, but the clusters are not regular enough to serve as the basis for predictions of future eruptions.

Scientists have no way of predicting with perfect accuracy whether a supervolcano will occur in a given century, decade, or year – and that includes 2012. But they do keep close tabs on volcanically active areas around the world, and so far there's absolutely no sign of a supereruption looming anytime soon.

For more information concerning 2012, visit

› 2012: Beginning of the End or Why the World Won't End?
http://www.nasa.gov/topics/earth/features/2012.html
› 2012 - The Series
http://www.nasa.gov/topics/earth/features/2012-series.html

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>