Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supervolcanoes: Not a threat for 2012

16.11.2011
The geological record holds clues that throughout Earth's 4.5-billion-year lifetime massive supervolcanoes, far larger than Mount St. Helens or Mount Pinatubo, have erupted. However, despite the claims of those who fear 2012, there's no evidence that such a supereruption is imminent.

What exactly is a "supervolcano" or a "supereruption?" Both terms are fairly new and favored by the media more than scientists, but geologists have begun to use them in recent years to refer to explosive volcanic eruptions that eject about ten thousand times the quantity of magma and ash that Mount St. Helens, one of the most explosive eruptions in recent years, expelled.


In Yellowstone, the rim of a supervolcano caldera is visible in the distance. Credit: National Park Service

It's hard to comprehend an eruption of that scope, but Earth's surface has preserved distinctive clues of many massive supereruptions. Expansive layers of ash blanket large portions of many continents. And huge hollowed-out calderas – craters that can be as big as 60 miles (100 km) across left when a volcano collapses after emptying its entire magma chamber at once – serve as visceral reminders of past supereruptions in Indonesia, New Zealand, the United States, and Chile.

The eruption of these prehistoric supervolcanoes has affected massive areas. The magma flow of Mount Toba in Sumutra, which erupted some 74,000 years ago in what was likely the largest eruption that has ever occurred, released a staggering 700 cubic miles (2,800 cubic km) of magma and left a thick layer of ash over all of South Asia. For comparison, the quantity of magma erupted from Indonesia's Mount Krakatau in 1883, one of the largest eruptions in recorded history, was about 3 cubic miles (12 cubic km).

Volcanologists continue to seek answers to many unanswered questions about supervolcanoes. For example, what triggers their eruptions, and why do they fail to erupt until their magma chambers achieve such enormous proportions? How does the composition compare to more familiar eruptions? And how can we predict when the next supervolcano will erupt?

But there's one thing that all experts agree on: supereruptions, though they occur, are exceedingly rare and the odds that one will occur in the lifetime of anybody reading this article are vanishingly small.

The most recent supereruption occurred in New Zealand about 26,000 years ago. The next most recent: the cataclysmic eruption of Mount Toba happened about 50,000 years earlier. In all, geologists have identified the remnant of about 50 supereruptions, though teams are in the process of evaluating a number of other possibilities.

That may sound like a large number. However, when one group of scientists used the count of all the known supervolcanoes to calculate the approximate frequency of eruptions, they found that only 1.4 supereruptions occur every one million years.

That's not to say that a supervolcano will occur every million years at regular intervals. Many millions of years could pass without a supereruption or many supervolcanoes could erupt in just a short period. The geological record does suggest supervolcanoes occur in clusters, but the clusters are not regular enough to serve as the basis for predictions of future eruptions.

Scientists have no way of predicting with perfect accuracy whether a supervolcano will occur in a given century, decade, or year – and that includes 2012. But they do keep close tabs on volcanically active areas around the world, and so far there's absolutely no sign of a supereruption looming anytime soon.

For more information concerning 2012, visit

› 2012: Beginning of the End or Why the World Won't End?
http://www.nasa.gov/topics/earth/features/2012.html
› 2012 - The Series
http://www.nasa.gov/topics/earth/features/2012-series.html

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>