Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supervolcano eruptions are triggered by melt buoyancy

06.01.2014
Jointly issued by ETH Zurich, ESRF and CNRS

Supervolcanos are not usual volcanos. By effectively "exploding" as opposed to erupting, they leave a giant hole in the Earth's crust instead of a volcanic cone – a caldera, which can be up to one hundred kilometres in diameter.



On average, supervolcanos are active more rarely than once every 100,000 years; since records began, none has been active. Consequently, researchers can only gain a vague idea of these events based on the ash and rock layers that have survived.

A team of researchers headed by ETH-Zurich professor Carmen Sanchez-Valle has now identified a trigger for supereruptions by determining the density of supervolcanic magma, using an X-ray beam at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This enabled the scientists to demonstrate that the overpressure generated by density differences in the magma chamber alone can trigger a supereruption. The magma chamber is located in the Earth's crust beneath the volcano.

The new findings could help us to understand "sleeping" supervolcanos better, including how quickly their magma can penetrate the Earth's crust and reach the surface.

Magma chamber too large

Well-known supervolcanos are located in the Yellowstone Caldera in the USA, Lake Toba in Indonesia and Lake Taupo in New Zealand. However, the somewhat smaller Phlegraean Fields near Naples are also included in the twenty or so known supervolcanos on Earth to date.

The fact that supereruptions – unlike conventional volcanos – are not triggered solely by overpressure due to magma recharge in the magma chamber has long been clear. A supervolcano's magma chamber can be several kilometres thick and up to one hundred kilometres wide, which makes it far too big to sustain sufficient overpressure through magma recharge.

"Comparable to a football underwater"

Until now, scientists could only speculate about what triggers a supereruption. One possible mechanism was thought to be the overpressure in the magma chamber generated through density differences between the less dense molten magma and the comparatively more dense rock in the surroundings. "The effect is comparable to the buoyancy of a football filled with air underwater, which is forced upwards by the denser water around it," says Wim Malfait, first author of the study, until recently at ETH Zurich and now a researcher at the Swiss Laboratories for Materials Science and Technology (Empa).

For the magma to break through the crustal rock above the magma chamber and carve out a path to the surface, it needs an overpressure level that is 100 to 400 times higher than air pressure (10 to 40 megapascals). In order to investigate whether the differences in density can generate such high pressure, the density of the magma melt and the surrounding rock material needs to be known. Until now, however, that of the magma melt could not be gauged directly.

Magma density determined for the first time

The researchers have now succeeded in determining the density of supervolcanic magma for the first time with the aid of X-rays. "X-rays can probe the state – liquid or solid – and the change in density when magma crystallises into rock," explains Mohamed Mezouar, scientist at the ESRF and a co-author of the publication in "Nature Geoscience". The scientists used a special press to study artificially produced magma melts under the same extreme pressure and temperature conditions as inside a volcanic magma chamber. Both the melts and the pressure and temperature conditions corresponded to the natural conditions of a supervolcano. Moreover, the researchers varied the water content of the melts. Via the different parameters, they formulated mathematical equations, which helped them to reconstruct the conditions in a supervolcano.

"The results reveal that if the magma chamber is big enough, the overpressure caused by differences in density alone are sufficient to penetrate the crust above and initiate an eruption," says Sanchez-Valle. Mechanisms that favoured conventional volcanic eruptions, such as the saturation of the magma with water vapour or tectonic tension, could be a contributory factor but are not necessary to trigger a supereruption, the researchers stress in their study.

Supervolcanos are considered a rare but serious threat. As they are not easy to spot on account of their unusual appearance, new ones are still being discovered today. Supereruptions generally eject at least 450 but sometimes even several thousands of cubic kilometres of rock material and ash to the surface and into the atmosphere. In the event of explosive eruptions, ash and rock fragments with their environmentally harmful chemical components can rise over thirty kilometres up into the atmosphere and have a devastating impact on the climate and life on Earth. The spectacular and serious eruptions of Krakatoa (1883) and Tambora (1815), both conventional volcanos in present-day Indonesia, were comparatively "harmless" and the masses they emitted only amounted to a few per cent of a supereruption.

Literature Reference

Malfait WJ, Seifert R, Petitgirard S, Perrillat JP, Mezouar M, Ota T, Nakamura E, Lerch P, Sanchez-Valle C: Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nature Geoscience, Advance Online Publication, 5 January 2014

Press Office | EurekAlert!
Further information:
http://www.ethz.ch

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>