Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supervolcano eruption -- in Sumatra -- deforested India 73,000 years ago

25.11.2009
A new study provides "incontrovertible evidence" that the volcanic super-eruption of Toba on the island of Sumatra about 73,000 years ago deforested much of central India, some 3,000 miles from the epicenter, researchers report.

The volcano ejected an estimated 800 cubic kilometers of ash into the atmosphere, leaving a crater (now the world's largest volcanic lake) that is 100 kilometers long and 35 kilometers wide. Ash from the event has been found in India, the Indian Ocean, the Bay of Bengal and the South China Sea.

The bright ash reflected sunlight off the landscape, and volcanic sulfur aerosols impeded solar radiation for six years, initiating an "Instant Ice Age" that – according to evidence in ice cores taken in Greenland – lasted about 1,800 years.

During this instant ice age, temperatures dropped by as much as 16 degrees centigrade (28 degrees Fahrenheit), said University of Illinois anthropology professor Stanley Ambrose, a principal investigator on the new study with professor Martin A.J. Williams, of the University of Adelaide. Williams, who discovered a layer of Toba ash in central India in 1980, led the research.

The climactic effects of Toba have been a source of controversy for years, as is its impact on human populations.

In 1998, Ambrose proposed in the Journal of Human Evolution that the effects of the Toba eruption and the Ice Age that followed could explain the apparent bottleneck in human populations that geneticists believe occurred between 50,000 and 100,000 years ago. The lack of genetic diversity among humans alive today suggests that during this time period humans came very close to becoming extinct.

To address the limited evidence of the terrestrial effects of Toba, Ambrose and his colleagues pursued two lines of research: They analyzed pollen from a marine core in the Bay of Bengal that included a layer of ash from the Toba eruption, and they looked at carbon isotope ratios in fossil soil carbonates taken from directly above and below the Toba ash in three locations in central India.

Carbon isotopes reflect the type of vegetation that existed at a given locale and time. Heavily forested regions leave carbon isotope fingerprints that are distinct from those of grasses or grassy woodlands.

Both lines of evidence revealed a distinct change in the type of vegetation in India immediately after the Toba eruption, the researchers report. The pollen analysis indicated a shift to a "more open vegetation cover and reduced representation of ferns, particularly in the first 5 to 7 centimeters above the Toba ash," they wrote in the journal Palaeogeography, Palaeoclimatology, Palaeoecology. The change in vegetation and the loss of ferns, which grow best in humid conditions, they wrote, "would suggest significantly drier conditions in this region for at least one thousand years after the Toba eruption."

The dryness probably also indicates a drop in temperature, Ambrose said, "because when you turn down the temperature you also turn down the rainfall."

The carbon isotope analysis showed that forests covered central India when the eruption occurred, but wooded to open grassland predominated for at least 1,000 years after the eruption.

"This is unambiguous evidence that Toba caused deforestation in the tropics for a long time," Ambrose said. This disaster may have forced the ancestors of modern humans to adopt new cooperative strategies for survival that eventually permitted them to replace neandertals and other archaic human species, he said.

Editor's note: To reach Stanley Ambrose, call 217-244-3504; e-mail: ambrose@illinois.edu

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>