Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suomi NPP Satellite Sees Typhoon Rammasun Approaching Philippines

15.07.2014

NASA-NOAA's Suomi NPP Satellite passed over Typhoon Rammasun early on July 14 and captured a visible image of the storm that showed large bands of thunderstorms wrapping into the center as it approached the central Philippines.

When NASA-NOAA's Suomi NPP satellite passed over Rammasun on July 14 at 04:20 UTC, the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard took a visible image of the storm.


The VIIRS instrument aboard NASA-NOAA's Suomi NPP satellite captured this visible image of Typhoon Rammasun on July 14 at 04:20 UTC.

Image Credit: NRL/NASA/NOAA

The VIIRS instrument showed large, thick bands of powerful thunderstorms wrapping into the low-level center of circulation. The largest band extended from the western to southern and around to the eastern quadrants of the storm before spiraling into the center. Powerful thunderstorms also surrounded the tightly wound eye.

VIIRS collects visible and infrared imagery and global observations of land, atmosphere, cryosphere and oceans. VIIRS flies aboard the Suomi NPP satellite, which is managed by both NASA and NOAA.

Forecasters at the Joint Typhoon Warning Center noted on July 14 that Rammasun had slowed in forward movement and continued to consolidate as convection (rising air that forms the thunderstorms that make up the tropical cyclone) has further strengthened and the storm has developed an irregular eye about 15 nautical miles wide.

Microwave satellite imagery showed the storm had strengthened as the eyewall (the powerful thunderstorms around the open eye) became more developed.

On July 14 at 1500 UTC (11 a.m. EDT), Typhoon Rammasun had maximum sustained winds near 75 knots. Rammasun was moving to the west-southwestward at 10 knots. It was centered near 12.7 north latitude and 127.6 east longitude, about 435 nautical miles southeast of Manila, and closing in on the central Visayas region of the Philippines.  

Typhoon Rammasun is expected to make landfall in the eastern Visayas region of the Philippines around July 15 at 0000 UTC (July 14 at 8 p.m. EDT). On July 13, Public storm warning signal #1 was in force in the following Luzon provinces: Camarines Norte & Sur, Catanduanes, Albay and Sorsogon, and Public storm warning signal #1 was in force in the Visayas province of Northern Samar. 

The Joint Typhoon Warning Center expects Rammasun to move across the central and northern Philippines in a northwesterly direction crossing near Manila around July 16 at 0000 UTC (July 15 at 8 p.m. EDT), then moving into the South China Sea for another landfall in mainland China, just north of Hainan Island late on July 18 as a typhoon.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!

Further reports about: Cryosphere EDT Flight NASA NOAA NPP Suomi Typhoon Typhoon Rammasun UTC VIIRS Warning knots satellite thunderstorms tropical cyclone

More articles from Earth Sciences:

nachricht Fossils Turn Out to Be a Rich Source of Information
09.02.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The shield is crumbling
09.02.2016 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>