Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suomi NPP satellite sees Molave on the move

13.08.2015

NASA-NOAA's Suomi NPP satellite flew over Tropical Storm Molave as it was moving away from Japan.

The Visible Infrared Imaging Radiometer Suite or VIIRS instrument aboard the satellite provided a visible image of the storm that showed the bulk of showers were southeast of the center of circulation.


The VIIRS instrument aboard NASA-NOAA's Suomi satellite captured this visible picture of Tropical Storm Molave on Aug. 12 at 02:53 UTC.

Credits: UW-CIMSS/NASA/NOAA

The clouds and thunderstorms were being pushed southeast by northwesterly wind shear between 10 and 20 knots/11.5 to 23.0 mph/18.5 to 37.0 kph. The Advanced Scatterometer (ASCAT) wind data showed that the strongest winds were in that same southeastern quadrant.

VIIRS is a scanning radiometer that collects visible and infrared imagery and "radiometric" measurements. Basically it means that VIIRS data is used to measure cloud and aerosol properties, ocean color, sea and land surface temperature, ice motion and temperature, fires, and Earth's albedo (reflected light).

On August 12, 2015 at 1500 UTC (11 a.m. EDT) Tropical Storm Molave had maximum sustained winds near 40 knots (46 mph/74 kph). It was centered near 33.8 North latitude and 149.9 East longitude, about 512 nautical miles east of Yokosuka, Japan. Molave was moving to the east at 13 knots (15 mph / 24 kph) and away from Japan.

Molave is moving east-northeast and forecasters at the Joint Typhoon Warning Center expect it to intensify a little to 50 knots because it will be tracking through sea surface temperatures near 26.6 Celsius (80 Fahrenheit). Molave is then expected to become extra-tropical south of Russia's Kamchatka Peninsula.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>