Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun's energy influences 1,000 years of natural climate variability in North Atlantic

10.03.2014

Changes in the sun's energy output may have led to marked natural climate change in Europe over the last 1000 years, according to researchers at Cardiff University.

Scientists studied seafloor sediments to determine how the temperature of the North Atlantic and its localised atmospheric circulation had altered. Warm surface waters flowing across the North Atlantic, an extension of the Gulf Stream, and warm westerly winds are responsible for the relatively mild climate of Europe, especially in winter. Slight changes in the transport of heat associated with these systems can led to regional climate variability, and the study findings matched historic accounts of climate change, including the notoriously severe winters of the 16th and 18th centuries which pre-date global industrialisation.


This is a composite created from three images received from MODIS instruments carried on NASA's Terra and Aqua polar orbiting satellites. The images were received at the Dundee Satellite Receiving Station at 1151, 1205 and 1342 UTC on 7th Jan. 2010.

Credit: NASA

The study found that changes in the Sun's activity can have a considerable impact on the ocean-atmospheric dynamics in the North Atlantic, with potential effects on regional climate.

Predictions suggest a prolonged period of low sun activity over the next few decades, but any associated natural temperature changes will be much smaller than those created by human carbon dioxide emissions, say researchers.

The study, led by Cardiff University scientists, in collaboration with colleagues at the University of Bern, is published today in the journal Nature Geoscience.

Dr Paola Moffa-Sanchez, lead author from Cardiff University School of Earth and Ocean Sciences, explained: "We used seafloor sediments taken from south of Iceland to study changes in the warm surface ocean current. This was done by analysing the chemical composition of fossilised microorganisms that had once lived in the surface of the ocean. These measurements were then used to reconstruct the seawater temperature and the salinity of this key ocean current over the past 1000 years."

The results of these analyses revealed large and abrupt temperature and salinity changes in the north-flowing warm current on time-scales of several decades to centuries. Cold ocean conditions were found to match periods of low solar energy output, corresponding to intervals of low sunspot activity observed on the surface of the sun. Using a physics-based climate model, the authors were able to test the response of the ocean to changes in the solar output and found similar results to the data.

"By using the climate model it was also possible to explore how the changes in solar output affected the surface circulation of the Atlantic Ocean," said Prof Ian Hall, a co-author of the study. "The circulation of the surface of the Atlantic Ocean is typically tightly linked to changes in the wind patterns. Analysis of the atmosphere component in the climate model revealed that during periods of solar minima there was a high-pressure system located west of the British Isles. This feature is often referred to as atmospheric blocking, and it is called this because it blocks the warm westerly winds diverting them and allowing cold Arctic air to flow south bringing harsh winters to Europe, such as those recently experienced in 2010 and 2013."

Meteorological studies have previously found similar effects of solar variability on the strength and duration of atmospheric winter blockings over the last 50 years, and although the exact nature of this relationship is not yet clear, it is thought to be due to complex processes happening in the upper layers of the atmosphere known as the stratosphere.

Dr Paola Moffa-Sanchez added: "In this study we show that this relationship is also at play on longer time-scales and the large ocean changes, recorded in the microfossils, may have helped sustain this atmospheric pattern. Indeed we propose that this combined ocean-atmospheric response to solar output minima may help explain the notoriously severe winters experienced across Europe between the 16th and 18th centuries, so vividly depicted in many paintings, including those of the famous London Frost Fairs on the River Thames, but also leading to extensive crop failures and famine as corroborated in the record of wheat prices during these periods."

The study concludes that although the temperature changes expected from future solar activity are much smaller than the warming from human carbon dioxide emissions, regional climate variability associated with the effects of solar output on the ocean and atmosphere should be taken into account when making future climate projections.

###

Notes for Editors:

Funding for this research has come from the Natural Environment Research Council, UK, the National Science Foundation, Switzerland, the European Commission and NCAR's Computational and Information Systems Laboratory (CISL). This research forms part of the Climate Change Consortium of Wales (C3W; http://c3wales.org/).

To arrange media interviews with Professor Ian Hall or Dr Paola Moffa-Sanchez, please contact Heath Jeffries, Media Manager, Cardiff University, on 07908 824029 or 02920 870917; email jeffrieshv1@cardiff.ac.uk

Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, University Chancellor Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Arts, Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences, along with a longstanding commitment to lifelong learning. Cardiff's four flagship Research Institutes are offering radical new approaches to cancer stem cells, catalysis, neurosciences and mental health and sustainable places.

Heath Jeffries | EurekAlert!
Further information:
http://www.cardiff.ac.uk

Further reports about: Cardiff Ocean activity atmosphere dioxide severe temperature variability winds

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>