Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Summer melt season is getting longer on the Antarctic Peninsula

New research from the Antarctic Peninsula shows that the summer melt season has been getting longer over the last 60 years -- Increased summer melting has been linked to the rapid break-up of ice shelves in the area and rising sea level

The Antarctic Peninsula – a mountainous region extending northwards towards South America – is warming much faster than the rest of Antarctica. Temperatures have risen by up to 3 oC since the 1950s – three times more than the global average.

This is a result of a strengthening of local westerly winds, causing warmer air from the sea to be pushed up and over the peninsula. In contrast to much of the rest of Antarctica, summer temperatures are high enough for snow to melt.

This summer melting may have important effects. Meltwater may enlarge cracks in floating ice shelves which can contribute to their retreat or collapse. As a result, the speed at which glaciers flow towards the sea will be increased. Also, melting and refreezing causes snow layers to become thinner and more dense, affecting the height of the snow surface above sea level. Scientists need to know this so they can interpret satellite data correctly.

Dr Nick Barrand, who carried out the research while working for the British Antarctic Survey, led an analysis of data from 30 weather stations on the peninsula. "We found a significant increase in the length of the melting season at most of the stations with the longest temperature records" he says. "At one station the average length of the melt season almost doubled between 1948 and 2011."

To build up a more complete picture across the whole peninsula, the team (funded by the European Union's ice2sea programme) also analysed satellite data collected by an instrument called a scatterometer. Using microwave reflections from the ice sheet surface, the scatterometer was able to detect the presence of meltwater. The team were able to produce maps of how the melt season varied from 1999 to 2009, and showed that several major ice shelf breakup events coincided with longer than usual melt seasons. This supports the theory that enlargement of cracks by meltwater is the main mechanism for ice shelf weakening and collapse.

The researchers also compared data from both the satellite and weather stations with the output of a state-of-the-art regional climate model.

Dr Barrand, who now works at the University of Birmingham, says, "We found that the model was very good at reproducing the pattern and timing of the melt, and changes in melting between years. This increases confidence in the use of climate models to predict future changes to snow and ice cover in the Antarctic Peninsula."

Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling will be officially published in the Journal of Geophysical Research this week.

To request an interview with Dr Nick Barrand please contact Catherine Byerley, International Media Relations Manager at the University of Birmingham. Tel: +44 (0)121 414 8254; Email:

For information on ice2sea contact Paul B. Holland at the British Antarctic Survey Communications Office, Cambridge. Tel: +44 (0)1223 221226; Email:

Images and paper available on request.

Notes to editors:

Ice2sea brings together the EU's scientific and operational expertise from 24 leading institutions across Europe and beyond. Improved projections of the contribution of ice to sea-level rise produced by this major programme funded by the European Commission's Framework 7 Programme (grant agreement 226375) will inform the fifth IPCC report (due in 2013). In 2007, the fourth Intergovernmental Panel on Climate Change (IPCC) report highlighted ice-sheets as the most significant remaining uncertainty in projections of sea-level rise.

The work was also funded by NSF grant ANT 1141973.

Paul B Holland | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>