Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Summer melt season is getting longer on the Antarctic Peninsula

28.03.2013
New research from the Antarctic Peninsula shows that the summer melt season has been getting longer over the last 60 years -- Increased summer melting has been linked to the rapid break-up of ice shelves in the area and rising sea level

The Antarctic Peninsula – a mountainous region extending northwards towards South America – is warming much faster than the rest of Antarctica. Temperatures have risen by up to 3 oC since the 1950s – three times more than the global average.

This is a result of a strengthening of local westerly winds, causing warmer air from the sea to be pushed up and over the peninsula. In contrast to much of the rest of Antarctica, summer temperatures are high enough for snow to melt.

This summer melting may have important effects. Meltwater may enlarge cracks in floating ice shelves which can contribute to their retreat or collapse. As a result, the speed at which glaciers flow towards the sea will be increased. Also, melting and refreezing causes snow layers to become thinner and more dense, affecting the height of the snow surface above sea level. Scientists need to know this so they can interpret satellite data correctly.

Dr Nick Barrand, who carried out the research while working for the British Antarctic Survey, led an analysis of data from 30 weather stations on the peninsula. "We found a significant increase in the length of the melting season at most of the stations with the longest temperature records" he says. "At one station the average length of the melt season almost doubled between 1948 and 2011."

To build up a more complete picture across the whole peninsula, the team (funded by the European Union's ice2sea programme) also analysed satellite data collected by an instrument called a scatterometer. Using microwave reflections from the ice sheet surface, the scatterometer was able to detect the presence of meltwater. The team were able to produce maps of how the melt season varied from 1999 to 2009, and showed that several major ice shelf breakup events coincided with longer than usual melt seasons. This supports the theory that enlargement of cracks by meltwater is the main mechanism for ice shelf weakening and collapse.

The researchers also compared data from both the satellite and weather stations with the output of a state-of-the-art regional climate model.

Dr Barrand, who now works at the University of Birmingham, says, "We found that the model was very good at reproducing the pattern and timing of the melt, and changes in melting between years. This increases confidence in the use of climate models to predict future changes to snow and ice cover in the Antarctic Peninsula."

Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling will be officially published in the Journal of Geophysical Research this week.

To request an interview with Dr Nick Barrand please contact Catherine Byerley, International Media Relations Manager at the University of Birmingham. Tel: +44 (0)121 414 8254; Email: c.j.byerley@bham.ac.uk

For information on ice2sea contact Paul B. Holland at the British Antarctic Survey Communications Office, Cambridge. Tel: +44 (0)1223 221226; Email: pbmho@bas.ac.uk

Images and paper available on request.

Notes to editors:

Ice2sea brings together the EU's scientific and operational expertise from 24 leading institutions across Europe and beyond. Improved projections of the contribution of ice to sea-level rise produced by this major programme funded by the European Commission's Framework 7 Programme (grant agreement 226375) will inform the fifth IPCC report (due in 2013). In 2007, the fourth Intergovernmental Panel on Climate Change (IPCC) report highlighted ice-sheets as the most significant remaining uncertainty in projections of sea-level rise.

The work was also funded by NSF grant ANT 1141973.

Paul B Holland | EurekAlert!
Further information:
http://www.bas.ac.uk

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>