Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Summer melt season is getting longer on the Antarctic Peninsula

28.03.2013
New research from the Antarctic Peninsula shows that the summer melt season has been getting longer over the last 60 years -- Increased summer melting has been linked to the rapid break-up of ice shelves in the area and rising sea level

The Antarctic Peninsula – a mountainous region extending northwards towards South America – is warming much faster than the rest of Antarctica. Temperatures have risen by up to 3 oC since the 1950s – three times more than the global average.

This is a result of a strengthening of local westerly winds, causing warmer air from the sea to be pushed up and over the peninsula. In contrast to much of the rest of Antarctica, summer temperatures are high enough for snow to melt.

This summer melting may have important effects. Meltwater may enlarge cracks in floating ice shelves which can contribute to their retreat or collapse. As a result, the speed at which glaciers flow towards the sea will be increased. Also, melting and refreezing causes snow layers to become thinner and more dense, affecting the height of the snow surface above sea level. Scientists need to know this so they can interpret satellite data correctly.

Dr Nick Barrand, who carried out the research while working for the British Antarctic Survey, led an analysis of data from 30 weather stations on the peninsula. "We found a significant increase in the length of the melting season at most of the stations with the longest temperature records" he says. "At one station the average length of the melt season almost doubled between 1948 and 2011."

To build up a more complete picture across the whole peninsula, the team (funded by the European Union's ice2sea programme) also analysed satellite data collected by an instrument called a scatterometer. Using microwave reflections from the ice sheet surface, the scatterometer was able to detect the presence of meltwater. The team were able to produce maps of how the melt season varied from 1999 to 2009, and showed that several major ice shelf breakup events coincided with longer than usual melt seasons. This supports the theory that enlargement of cracks by meltwater is the main mechanism for ice shelf weakening and collapse.

The researchers also compared data from both the satellite and weather stations with the output of a state-of-the-art regional climate model.

Dr Barrand, who now works at the University of Birmingham, says, "We found that the model was very good at reproducing the pattern and timing of the melt, and changes in melting between years. This increases confidence in the use of climate models to predict future changes to snow and ice cover in the Antarctic Peninsula."

Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling will be officially published in the Journal of Geophysical Research this week.

To request an interview with Dr Nick Barrand please contact Catherine Byerley, International Media Relations Manager at the University of Birmingham. Tel: +44 (0)121 414 8254; Email: c.j.byerley@bham.ac.uk

For information on ice2sea contact Paul B. Holland at the British Antarctic Survey Communications Office, Cambridge. Tel: +44 (0)1223 221226; Email: pbmho@bas.ac.uk

Images and paper available on request.

Notes to editors:

Ice2sea brings together the EU's scientific and operational expertise from 24 leading institutions across Europe and beyond. Improved projections of the contribution of ice to sea-level rise produced by this major programme funded by the European Commission's Framework 7 Programme (grant agreement 226375) will inform the fifth IPCC report (due in 2013). In 2007, the fourth Intergovernmental Panel on Climate Change (IPCC) report highlighted ice-sheets as the most significant remaining uncertainty in projections of sea-level rise.

The work was also funded by NSF grant ANT 1141973.

Paul B Holland | EurekAlert!
Further information:
http://www.bas.ac.uk

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>