Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sulphur and iron compounds common in old shipwrecks

Sulphur and iron compounds have now been found in shipwrecks both in the Baltic and off the west coast of Sweden. The group behind the results, presented in the Journal of Archaeological Science, includes scientists from the University of Gothenburg and Stockholm University.

A few years ago scientists reported large quantities of sulphur and iron compounds in the salvaged 17th century warship Vasa, resulting in the development of sulphuric acid and acidic salt precipitates on the surface of the hull and loose wooden objects.

Sulphur and iron compounds have now been found in shipwrecks both in the Baltic and off the west coast of Sweden. The group behind the results includes scientists from the University of Gothenburg and Stockholm University. The research was presented in the Journal of Archaeological Science. Photo: University of Gothenburg

Other vessels also affected

Similar sulphur compounds have now been discovered also in other shipwrecks both from the Baltic and off the west coast of Sweden, including fellow 17th century warships Kronan, Riksnyckeln and Stora Sofia, the 17th century merchant vessel in Gothenburg known as the Göta wreck, and the Viking ships excavated at Skuldelev in Denmark.

"This is a result of natural biological and chemical processes that occur in low-oxygen water and sediments," explains Yvonne Fors from the University of Gothenburg's Department of Conservation, one of the scientists behind the study in collaboration with Stockholm University.

Preventive action possible

Besides the Vasa, similar problems have previously been reported for Henry VIII's flagship Mary Rose in the UK, which sank off Portsmouth in 1545, and the Dutch vessel Batavia in Australia, which was lost in 1629, the year after the Vasa.

"Our work on the Vasa and the Mary Rose has given us a good insight into these problems," Yvonne Fors says. "With the right actions, such as new preservation procedures, we'll be better able to prevent these shipwrecks from developing such serious problems with sulphuric acid."

Toxic hydrogen sulphide reacts with wood

Even in low-oxygen-water, bacteria can break down organic material including the wood cells in a vessel's hull. Sulphates that occur naturally in the water are transformed by bacteria into toxic hydrogen sulphide which reacts with the wood. In the presence of iron ions, sulphur and iron compounds form which readily oxidise into sulphuric acid and acid salt precipitates in a damp museum environment once the vessel has been recovered.

"For some of the wrecks, such as the Skuldelev Viking ships and the Göta wreck, the conservation treatment is already finished," says Fors. "It's then a matter of keeping an eye on the chemical developments, which requires additional resources."

Many of the chemical analyses in the study were performed at the advanced radiation facilities at SSRL in Stanford in the USA and at ESRF in France.

Yvonne Fors | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>