Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying meteorites may reveal Mars’ secrets of life

02.05.2013
In an effort to determine if conditions were ever right on Mars to sustain life, a team of scientists, including a Michigan State University professor, has examined a meteorite that formed on the red planet more than a billion years ago.
And although this team’s work is not specifically solving the mystery, it is laying the groundwork for future researchers to answer this age-old question.

The problem, said MSU geological sciences professor Michael Velbel, is that most meteorites that originated on Mars arrived on Earth so long ago that now they have characteristics that tell of their life on Earth, obscuring any clues it might offer about their time on Mars.

“These meteorites contain water-related mineral and chemical signatures that can signify habitable conditions,” he said. “The trouble is by the time most of these meteorites have been lying around on Earth they pick up signatures that look just like habitable environments, because they are. Earth, obviously, is habitable.

“If we could somehow prove the signature on the meteorite was from before it came to Earth, that would be telling us about Mars.”

Specifically, the team found mineral and chemical signatures on the rocks that indicated terrestrial weathering – changes that took place on Earth. The identification of these types of changes will provide valuable clues as scientists continue to examine the meteorites.

“Our contribution is to provide additional depth and a little broader view than some work has done before in sorting out those two kinds of water-related alterations – the ones that happened on Earth and the ones that happened on Mars,” Velbel said.

The meteorite that Velbel and his colleagues examined – known as a nakhlite meteorite – was recovered in 2003 in the Miller Range of Antarctica. About the size of a tennis ball and weighing in at one-and-a-half pounds, the meteorite was one of hundreds recovered from that area.

Velbel said past examinations of meteorites that originated on Mars, as well as satellite and Rover data, prove water once existed on Mars, which is the fourth planet from the sun and Earth’s nearest Solar System neighbor.

“However,” he said, “until a Mars mission successfully returns samples from Mars, mineralogical studies of geochemical processes on Mars will continue to depend heavily on data from meteorites.”

Velbel is currently serving as a senior fellow at the Smithsonian Institution’s National Museum of Natural History in Washington D.C.

The research is published in Geochimica et Cosmochimica Acta, a bi-weekly journal co-sponsored by two professional societies, the Geochemical Society and the Meteoritical Society.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>