Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Ties Forest "Greenness" in Western U.S. to Snowpack Extent

11.09.2012
Mid-elevation mountain ecosystems most sensitive to rising temperatures and changes in snowmelt

Results of a new study tie forest "greenness" in the western United States to fluctuating year-to-year snowpack extent.


A Sierra Nevada forest in Sequoia National Park: snow depth and forest pattern are related.

The results show that mid-elevation mountain ecosystems are the most sensitive to rising temperatures and to changes in precipitation and snowmelt.

University of Colorado-Boulder scientist Noah Molotch and colleagues used satellite images and ground measurements to identify the threshold at which mid-level forests sustained by moisture change to higher-elevation forests sustained by sunlight.

A paper reporting the results was published yesterday in the journal Nature Geoscience.

Molotch is the lead author. Co-authors are Ernesto Trujillo of the University of Colorado-Boulder and Ecole Polytechnique Fédérale de Lausanne in Switzerland; Michael Golden and Anne Kelly of the University of California, Irvine; and Roger Bales of the University of California, Merced.

"The research demonstrates yet another complexity in the response of mountain ecosystems to increasing temperatures," says hydrologist Tom Torgersen, program director in the National Science Foundation's Division of Earth Sciences, which funded the research. "High-elevation mountain forests are typically temperature-stressed and low-elevation mountain forests are often water-stressed.

"At mid-elevations, 'everything is just right'--until it goes wrong." Torgersen says, "Higher temperatures lead to reduced snowpack and reduced water availability, leaving trees at mid-elevations more stressed and more prone to fires."

The ability to identify this "tipping point" is important, Molotch says, because mid-level forests--at altitudes from roughly 6,500 feet to 8,000 feet--are where many people live and visit. They're also linked with increasing wildfires, beetle outbreaks and rising tree mortality.

"These results provide the first direct observations of snowpack-forest connections across broad scales," says Molotch.

"Finding the tipping point between water-limited [mid-elevation] forests and energy-limited [high-elevation] forests defines the region of the greatest sensitivity to climate change--the mid-elevation forests--which is where we should focus future research," he says.

Although the research took place in the Sierra Nevada mountain range in California, it's applicable to other mountain ranges across the West.

Climate studies show that the snowpack in mid-elevation forests in the western United States and other forests around the world has been decreasing over the past 50 years because of regional warming.

"We found that mid-elevation forests show a dramatic sensitivity to snow that fell the previous winter in terms of accumulation and subsequent melt," said Molotch, also a scientist at NASA's Jet Propulsion Laboratory in Pasadena.

"If snowpack declines, forests become more stressed, which can lead to ecological changes in the distribution and abundance of plant and animal species, and to more vulnerability to fires and to beetle kill."

Molotch says that about 50 percent of the greenness seen by satellites in mid-elevation forests is linked with maximum snow accumulation from the previous winter, with the other 50 percent related to soil depth, soil nutrients, temperature and sunlight.

"The strength of the relationship between forest greenness and snowpack from the previous year is very surprising," Molotch says.

The researchers initially set out to identify the various components of drought that lead to vegetation stress.

"We went after mountain snowpacks in the western U.S. because they provide about 60 to 80 percent of the water in high-elevation mountains," says Molotch.

The team used 26 years of continuous data from the Advanced Very High Resolution Radiometer, a space-borne sensor flying on a National Oceanic and Atmospheric Administration satellite, to measure the forest greenness.

The researchers compared it with long-term data from 117 snow stations maintained by the California Cooperative Snow Survey, a consortium of state and federal agencies.

In addition, the scientists used information gathered from "flux towers" in the southern Sierra Nevada mountain range. Instruments on these towers measure the exchanges of carbon dioxide, water vapor and energy between the land and the atmosphere.

Instruments on the towers, which are some 100 feet high, allowed scientists to measure the sensitivity of both mid-level and high-level mountainous regions to both wet and dry years--data that matched up well with the satellite and ground data.

"The implications of this study are profound when you think about the potential for ecological change in mountain environments in the West," says Molotch.

"If we look ahead to the time when climate models are calling for warming and drying conditions, the implication is that forests will be increasingly water-stressed in the future and more vulnerable to fires and insect outbreaks."

In the context of recent forest losses to fire in Colorado and elsewhere, the findings are something that really deserve attention, Molotch says.

"This tipping-point elevation is very likely going to migrate up the mountainsides as climate warms."

The research was also funded by NASA.

-NSF-

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Jim Scott, University of Colorado-Boulder (303) 492-3114 jim.scott@colorado.edu
Related Websites
NSF discovery article: A Tree Stands in the Sierra Nevada: http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=125091&org=NSF
NSF Southern Sierra Critical Zone Observatory: https://eng.ucmerced.edu/czo/index.html

NSF Critical Zone Observatories: Where Rock Meets Life: http://www.criticalzone.org/

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=125359&org=NSF&from=news

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>