Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Ties Forest "Greenness" in Western U.S. to Snowpack Extent

11.09.2012
Mid-elevation mountain ecosystems most sensitive to rising temperatures and changes in snowmelt

Results of a new study tie forest "greenness" in the western United States to fluctuating year-to-year snowpack extent.


A Sierra Nevada forest in Sequoia National Park: snow depth and forest pattern are related.

The results show that mid-elevation mountain ecosystems are the most sensitive to rising temperatures and to changes in precipitation and snowmelt.

University of Colorado-Boulder scientist Noah Molotch and colleagues used satellite images and ground measurements to identify the threshold at which mid-level forests sustained by moisture change to higher-elevation forests sustained by sunlight.

A paper reporting the results was published yesterday in the journal Nature Geoscience.

Molotch is the lead author. Co-authors are Ernesto Trujillo of the University of Colorado-Boulder and Ecole Polytechnique Fédérale de Lausanne in Switzerland; Michael Golden and Anne Kelly of the University of California, Irvine; and Roger Bales of the University of California, Merced.

"The research demonstrates yet another complexity in the response of mountain ecosystems to increasing temperatures," says hydrologist Tom Torgersen, program director in the National Science Foundation's Division of Earth Sciences, which funded the research. "High-elevation mountain forests are typically temperature-stressed and low-elevation mountain forests are often water-stressed.

"At mid-elevations, 'everything is just right'--until it goes wrong." Torgersen says, "Higher temperatures lead to reduced snowpack and reduced water availability, leaving trees at mid-elevations more stressed and more prone to fires."

The ability to identify this "tipping point" is important, Molotch says, because mid-level forests--at altitudes from roughly 6,500 feet to 8,000 feet--are where many people live and visit. They're also linked with increasing wildfires, beetle outbreaks and rising tree mortality.

"These results provide the first direct observations of snowpack-forest connections across broad scales," says Molotch.

"Finding the tipping point between water-limited [mid-elevation] forests and energy-limited [high-elevation] forests defines the region of the greatest sensitivity to climate change--the mid-elevation forests--which is where we should focus future research," he says.

Although the research took place in the Sierra Nevada mountain range in California, it's applicable to other mountain ranges across the West.

Climate studies show that the snowpack in mid-elevation forests in the western United States and other forests around the world has been decreasing over the past 50 years because of regional warming.

"We found that mid-elevation forests show a dramatic sensitivity to snow that fell the previous winter in terms of accumulation and subsequent melt," said Molotch, also a scientist at NASA's Jet Propulsion Laboratory in Pasadena.

"If snowpack declines, forests become more stressed, which can lead to ecological changes in the distribution and abundance of plant and animal species, and to more vulnerability to fires and to beetle kill."

Molotch says that about 50 percent of the greenness seen by satellites in mid-elevation forests is linked with maximum snow accumulation from the previous winter, with the other 50 percent related to soil depth, soil nutrients, temperature and sunlight.

"The strength of the relationship between forest greenness and snowpack from the previous year is very surprising," Molotch says.

The researchers initially set out to identify the various components of drought that lead to vegetation stress.

"We went after mountain snowpacks in the western U.S. because they provide about 60 to 80 percent of the water in high-elevation mountains," says Molotch.

The team used 26 years of continuous data from the Advanced Very High Resolution Radiometer, a space-borne sensor flying on a National Oceanic and Atmospheric Administration satellite, to measure the forest greenness.

The researchers compared it with long-term data from 117 snow stations maintained by the California Cooperative Snow Survey, a consortium of state and federal agencies.

In addition, the scientists used information gathered from "flux towers" in the southern Sierra Nevada mountain range. Instruments on these towers measure the exchanges of carbon dioxide, water vapor and energy between the land and the atmosphere.

Instruments on the towers, which are some 100 feet high, allowed scientists to measure the sensitivity of both mid-level and high-level mountainous regions to both wet and dry years--data that matched up well with the satellite and ground data.

"The implications of this study are profound when you think about the potential for ecological change in mountain environments in the West," says Molotch.

"If we look ahead to the time when climate models are calling for warming and drying conditions, the implication is that forests will be increasingly water-stressed in the future and more vulnerable to fires and insect outbreaks."

In the context of recent forest losses to fire in Colorado and elsewhere, the findings are something that really deserve attention, Molotch says.

"This tipping-point elevation is very likely going to migrate up the mountainsides as climate warms."

The research was also funded by NASA.

-NSF-

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Jim Scott, University of Colorado-Boulder (303) 492-3114 jim.scott@colorado.edu
Related Websites
NSF discovery article: A Tree Stands in the Sierra Nevada: http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=125091&org=NSF
NSF Southern Sierra Critical Zone Observatory: https://eng.ucmerced.edu/czo/index.html

NSF Critical Zone Observatories: Where Rock Meets Life: http://www.criticalzone.org/

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=125359&org=NSF&from=news

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>