Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Source of organic matter affects Bay water quality

24.04.2013
Persistence of “urban” organics downstream favors dead-zone formation
Each time it rains, runoff carries an earthy tea steeped from leaf litter, crop residue, soil, and other organic materials into the storm drains and streams that feed Chesapeake Bay.

A new study led by researchers at the Virginia Institute of Marine Science reveals that land use in the watersheds from which this “dissolved organic matter” originates has important implications for Bay water quality, with the organic carbon in runoff from urbanized or heavily farmed landscapes more likely to persist as it is carried downstream, thus contributing energy to fuel low-oxygen “dead zones” in coastal waters.

The study appears in this month’s issue of the Journal of Geophysical Research, and was highlighted by the journal’s publisher, the American Geophysical Union, as an “AGU Research Spotlight” in their print and online channels.

The study was authored by VIMS post-doctoral researcher Dr. Yuehan Lu (now at the University of Alabama), VIMS Professor Elizabeth Canuel, Professor Jim Bauer of Ohio State University, Associate Professor Youhei Yamashita of Hokkaido 
University in Japan, Professor Randy Chambers of the College of William & Mary, and Professor Rudolf Jaffé of Florida International University.

Low-oxygen dead zones are a growing problem in Chesapeake Bay and coastal ecosystems worldwide. While most management practices focus on reducing inputs of nitrogen and other nutrients known to fuel dead zones, Canuel says “organic matter from the watershed may also contribute. One goal of our study was to examine the quality of organic matter derived from streams and its potential to contribute to dead-zone formation.”

Sunlight & bacteria

As streams and rivers carry dissolved organic matter downstream, bacteria or sunlight can modify it into compounds and forms that are more difficult for organisms to use. While the team’s research showed no significant difference in bacterial degradation of organic matter from cleared or forested watersheds, Canuel says it did show that “organic carbon in runoff from watersheds affected by 
human activity is less 
susceptible to solar degradation than that from forested watersheds.”

“Urban organics” thus remain at higher 
levels longer, says Canuel, “delivering more organic material to the river mouth and increasing the likelihood that low-oxygen conditions will develop in downstream locations such as estuaries and the coastal ocean.”

The research team conducted their study using samples taken from seven small streams that flow into the James and York rivers, major tributaries of Chesapeake Bay. Three of these streams drain forested watersheds, with 87 to 100% tree cover, while the other four drain watersheds largely converted by human activity into pasture, cropland, or pavement and buildings.

The authors aren’t yet sure why the
 organic carbon from the more developed watersheds is less vulnerable to breakdown by sunlight in rivers and streams, but suggest that it might be because it has already been exposed to appreciable sunlight in the less shady urban and agricultural environment.
Says Canuel, “Urban organics may persist downstream because their more photoreactive compounds have already been degraded due to greater light exposure in urban areas, farm fields, and pastures, leaving only the more photo-resistant, refractory compounds to wash into the coastal zone.”

The team’s findings provide one possible mechanism for an observed increase in the concentration of dissolved organic carbon in the surface waters of North America and Europe during the last few decades, and have implications for management of water quality in coastal zones worldwide.

“Our results show that future studies should assess not only the quantity of dissolved organic carbon entering our rivers and streams, but also its source,” says Canuel. “Understanding how organic matter from developed and undeveloped watersheds behaves in the aquatic environment will contribute to the development of more effective watershed management practices and hopefully more successful efforts to reduce the number, extent, and duration of low-oxygen dead zones.”

David Malmquist | EurekAlert!
Further information:
http://www.vims.edu

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>