Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study: Source of organic matter affects Bay water quality

Persistence of “urban” organics downstream favors dead-zone formation
Each time it rains, runoff carries an earthy tea steeped from leaf litter, crop residue, soil, and other organic materials into the storm drains and streams that feed Chesapeake Bay.

A new study led by researchers at the Virginia Institute of Marine Science reveals that land use in the watersheds from which this “dissolved organic matter” originates has important implications for Bay water quality, with the organic carbon in runoff from urbanized or heavily farmed landscapes more likely to persist as it is carried downstream, thus contributing energy to fuel low-oxygen “dead zones” in coastal waters.

The study appears in this month’s issue of the Journal of Geophysical Research, and was highlighted by the journal’s publisher, the American Geophysical Union, as an “AGU Research Spotlight” in their print and online channels.

The study was authored by VIMS post-doctoral researcher Dr. Yuehan Lu (now at the University of Alabama), VIMS Professor Elizabeth Canuel, Professor Jim Bauer of Ohio State University, Associate Professor Youhei Yamashita of Hokkaido 
University in Japan, Professor Randy Chambers of the College of William & Mary, and Professor Rudolf Jaffé of Florida International University.

Low-oxygen dead zones are a growing problem in Chesapeake Bay and coastal ecosystems worldwide. While most management practices focus on reducing inputs of nitrogen and other nutrients known to fuel dead zones, Canuel says “organic matter from the watershed may also contribute. One goal of our study was to examine the quality of organic matter derived from streams and its potential to contribute to dead-zone formation.”

Sunlight & bacteria

As streams and rivers carry dissolved organic matter downstream, bacteria or sunlight can modify it into compounds and forms that are more difficult for organisms to use. While the team’s research showed no significant difference in bacterial degradation of organic matter from cleared or forested watersheds, Canuel says it did show that “organic carbon in runoff from watersheds affected by 
human activity is less 
susceptible to solar degradation than that from forested watersheds.”

“Urban organics” thus remain at higher 
levels longer, says Canuel, “delivering more organic material to the river mouth and increasing the likelihood that low-oxygen conditions will develop in downstream locations such as estuaries and the coastal ocean.”

The research team conducted their study using samples taken from seven small streams that flow into the James and York rivers, major tributaries of Chesapeake Bay. Three of these streams drain forested watersheds, with 87 to 100% tree cover, while the other four drain watersheds largely converted by human activity into pasture, cropland, or pavement and buildings.

The authors aren’t yet sure why the
 organic carbon from the more developed watersheds is less vulnerable to breakdown by sunlight in rivers and streams, but suggest that it might be because it has already been exposed to appreciable sunlight in the less shady urban and agricultural environment.
Says Canuel, “Urban organics may persist downstream because their more photoreactive compounds have already been degraded due to greater light exposure in urban areas, farm fields, and pastures, leaving only the more photo-resistant, refractory compounds to wash into the coastal zone.”

The team’s findings provide one possible mechanism for an observed increase in the concentration of dissolved organic carbon in the surface waters of North America and Europe during the last few decades, and have implications for management of water quality in coastal zones worldwide.

“Our results show that future studies should assess not only the quantity of dissolved organic carbon entering our rivers and streams, but also its source,” says Canuel. “Understanding how organic matter from developed and undeveloped watersheds behaves in the aquatic environment will contribute to the development of more effective watershed management practices and hopefully more successful efforts to reduce the number, extent, and duration of low-oxygen dead zones.”

David Malmquist | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>