Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows North Atlantic Ocean CO2 storage doubled over last decade

03.02.2016

Findings by Rosenstiel School researchers have important implications for ocean life

A University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science-led study shows that the North Atlantic absorbed 50 percent more man-made carbon dioxide over the last decade, compared to the previous decade. The findings show the impact that the burning of fossil fuels have had on the world's oceans in just 10 years.


Increases in anthropogenic CO2 in the Atlantic Ocean between 2003 and 2014.

Credit: Ryan Woosley, UM Rosenstiel School of Marine and Atmospheric Science

To determine the total uptake and storage of carbon dioxide in the North Atlantic over the last several decades, researchers analyzed data collected from the same locations, but 10 years apart, to identify changes caused by man-made CO2.

The data were collected during two National Science Foundation-funded international ship-based studies, CLIVAR (Climate Variability CO2 Repeat Hydrography) and GO-SHIP (Global Ocean Ship-Based Hydrographic Investigations Program).

"This study shows the large impact all of us are having on the environment and that our use of fossil fuels isn't only causing the climate to change, but also affects the oceans by decreasing the pH," said Ryan Woosley, a researcher in the UM Rosenstiel School, Department of Ocean Sciences.

The oceans help to slow the growth of human produced CO2 in the atmosphere by absorbing and storing about a quarter of the total carbon dioxide emissions. The North Atlantic is an area of high uptake and storage due to large-scale ocean circulations.

The uptake of CO2 has many impacts on ocean-dwelling organisms by decreasing the pH. The findings have important implications for marine organisms, such as corals and mollusks, which require a certain pH level in the surrounding water to build their calcium carbonate-based shells and exoskeletons.

The researchers hope to return in another 10 years to determine if the increase in carbon uptake continues, or if, as many fear, it will decrease as a result of slowing thermohaline circulation.

###

The study, titled "Rapid Anthropogenic Changes in CO2 and pH in the Atlantic Ocean: 2003-2014" was published in the journal Global Biogeochemical Cycles. The study's authors include: Woosley and Frank J. Millero of the UM Rosenstiel School; and Rik Wanninkhof of NOAA's Atlantic Oceanographic and Meteorological Laboratory. The study was funded by the National Science Foundation through grant #OCE0752972. The study can be accessed at http://onlinelibrary.wiley.com/doi/10.1002/2015GB005248/pdf

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>