Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on how heat is transported to Greenland glaciers

29.03.2011
Warmer air is only part of the story when it comes to Greenland’s rapidly melting ice sheet. New research by scientists at Woods Hole Oceanographic Institution (WHOI) highlights the role ocean circulation plays in transporting heat to glaciers.

Greenland's ice sheet has lost mass at an accelerated rate over the last decade, dumping more ice and fresh water into the ocean. Between 2001 and 2005, Helheim Glacier, a large glacier on Greenland’s southeast coast, retreated 5 miles (8 kilometers) and its flow speed nearly doubled.

A research team led by WHOI physical oceanographer Fiamma Straneo discovered warm, subtropical waters deep inside Sermilik Fjord at the base of Helheim Glacier in 2009. “We knew that these warm waters were reaching the fjords, but we did not know if they were reaching the glaciers or how the melting was occurring,” says Straneo, lead author of the new study on fjord dynamics published online in the March 20 edition of the journal Nature Geoscience.

The team returned to Greenland in March 2010, to do the first-ever winter survey of the fjord. Using a tiny boat and a helicopter, Straneo and her colleague, Kjetil Våge of University of Bergen, Norway, were able to launch probes closer to the glacier than ever before—about 2.5 miles away from the glacier’s edge. Coupled with data from August 2009, details began to emerge of a complicated interaction between glacier ice, freshwater runoff and warm, salty ocean waters.

“People always thought the circulation here would be simple: warm waters coming into the fjords at depth, melting the glaciers. Then the mixture of warm water and meltwater rises because it is lighter, and comes out at the top. Nice and neat,” says Straneo. “But it’s much more complex than that.”

The fjords contain cold, fresh Arctic water on top and warm, salty waters from the Gulf Stream at the bottom. Melted waters do rise somewhat, but not all the way to the top.

“It’s too dense,” Straneo says. “It actually comes out at the interface where the Arctic water and warm water meet.” This distinction is important, adds Straneo, because it prevents the heat contained in the deep waters from melting the upper third of the glacier. Instead, the glacier develops a floating ice tongue—a shelf of ice that extends from the main body of the glacier out onto the waters of the fjord. The shape of the ice tongue influences the stability of the glacier and how quickly it flows.

In addition, the team found that vigorous currents within the fjord driven by winds and tides also play a part in melting and flow speed. “The currents in the fjord are like waves in a bath tub,” Straneo says. “This oscillation and mixing contribute to heat transport to the glaciers.”

The March 2010 trip marked the first time the researchers were able to observe winter-time conditions in the fjord, which is how the system probably works nine months out of the year.

“One surprise we found was that the warm waters in the fjord are actually 1 degree Celsius warmer in winter, which by Greenland standards is a lot,” Straneo says. “It raises the possibility that winter melt rates might be larger than those in the summer.

“Current climate models do not take these factors into account,” she adds. “We’re just beginning to understand all of the pieces. We need to know more about how the ocean changes at the glaciers edge. It’s critical to improving predictions of future ice sheet variability and sea level rise."

Co-authors of the work include Ruth Curry and Claudia Cenedese of WHOI, David Sutherland of University of Washington, Gordon Hamilton of University of Maine, Leigh Stearns of University of Kansas, and Kjetil Våge of University of Bergen, Norway.

Funding for this research was provided by the National Science Foundation, WHOI's Ocean and Climate Change Institute Arctic Research Initiative, and NASA’s Cryosperic Sciences Program.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment.

Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/page.do?pid=7545&tid=282&cid=95209&ct=162

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>