Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study sheds light on how heat is transported to Greenland glaciers

Warmer air is only part of the story when it comes to Greenland’s rapidly melting ice sheet. New research by scientists at Woods Hole Oceanographic Institution (WHOI) highlights the role ocean circulation plays in transporting heat to glaciers.

Greenland's ice sheet has lost mass at an accelerated rate over the last decade, dumping more ice and fresh water into the ocean. Between 2001 and 2005, Helheim Glacier, a large glacier on Greenland’s southeast coast, retreated 5 miles (8 kilometers) and its flow speed nearly doubled.

A research team led by WHOI physical oceanographer Fiamma Straneo discovered warm, subtropical waters deep inside Sermilik Fjord at the base of Helheim Glacier in 2009. “We knew that these warm waters were reaching the fjords, but we did not know if they were reaching the glaciers or how the melting was occurring,” says Straneo, lead author of the new study on fjord dynamics published online in the March 20 edition of the journal Nature Geoscience.

The team returned to Greenland in March 2010, to do the first-ever winter survey of the fjord. Using a tiny boat and a helicopter, Straneo and her colleague, Kjetil Våge of University of Bergen, Norway, were able to launch probes closer to the glacier than ever before—about 2.5 miles away from the glacier’s edge. Coupled with data from August 2009, details began to emerge of a complicated interaction between glacier ice, freshwater runoff and warm, salty ocean waters.

“People always thought the circulation here would be simple: warm waters coming into the fjords at depth, melting the glaciers. Then the mixture of warm water and meltwater rises because it is lighter, and comes out at the top. Nice and neat,” says Straneo. “But it’s much more complex than that.”

The fjords contain cold, fresh Arctic water on top and warm, salty waters from the Gulf Stream at the bottom. Melted waters do rise somewhat, but not all the way to the top.

“It’s too dense,” Straneo says. “It actually comes out at the interface where the Arctic water and warm water meet.” This distinction is important, adds Straneo, because it prevents the heat contained in the deep waters from melting the upper third of the glacier. Instead, the glacier develops a floating ice tongue—a shelf of ice that extends from the main body of the glacier out onto the waters of the fjord. The shape of the ice tongue influences the stability of the glacier and how quickly it flows.

In addition, the team found that vigorous currents within the fjord driven by winds and tides also play a part in melting and flow speed. “The currents in the fjord are like waves in a bath tub,” Straneo says. “This oscillation and mixing contribute to heat transport to the glaciers.”

The March 2010 trip marked the first time the researchers were able to observe winter-time conditions in the fjord, which is how the system probably works nine months out of the year.

“One surprise we found was that the warm waters in the fjord are actually 1 degree Celsius warmer in winter, which by Greenland standards is a lot,” Straneo says. “It raises the possibility that winter melt rates might be larger than those in the summer.

“Current climate models do not take these factors into account,” she adds. “We’re just beginning to understand all of the pieces. We need to know more about how the ocean changes at the glaciers edge. It’s critical to improving predictions of future ice sheet variability and sea level rise."

Co-authors of the work include Ruth Curry and Claudia Cenedese of WHOI, David Sutherland of University of Washington, Gordon Hamilton of University of Maine, Leigh Stearns of University of Kansas, and Kjetil Våge of University of Bergen, Norway.

Funding for this research was provided by the National Science Foundation, WHOI's Ocean and Climate Change Institute Arctic Research Initiative, and NASA’s Cryosperic Sciences Program.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment.

Media Relations Office | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>