Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on how heat is transported to Greenland glaciers

29.03.2011
Warmer air is only part of the story when it comes to Greenland’s rapidly melting ice sheet. New research by scientists at Woods Hole Oceanographic Institution (WHOI) highlights the role ocean circulation plays in transporting heat to glaciers.

Greenland's ice sheet has lost mass at an accelerated rate over the last decade, dumping more ice and fresh water into the ocean. Between 2001 and 2005, Helheim Glacier, a large glacier on Greenland’s southeast coast, retreated 5 miles (8 kilometers) and its flow speed nearly doubled.

A research team led by WHOI physical oceanographer Fiamma Straneo discovered warm, subtropical waters deep inside Sermilik Fjord at the base of Helheim Glacier in 2009. “We knew that these warm waters were reaching the fjords, but we did not know if they were reaching the glaciers or how the melting was occurring,” says Straneo, lead author of the new study on fjord dynamics published online in the March 20 edition of the journal Nature Geoscience.

The team returned to Greenland in March 2010, to do the first-ever winter survey of the fjord. Using a tiny boat and a helicopter, Straneo and her colleague, Kjetil Våge of University of Bergen, Norway, were able to launch probes closer to the glacier than ever before—about 2.5 miles away from the glacier’s edge. Coupled with data from August 2009, details began to emerge of a complicated interaction between glacier ice, freshwater runoff and warm, salty ocean waters.

“People always thought the circulation here would be simple: warm waters coming into the fjords at depth, melting the glaciers. Then the mixture of warm water and meltwater rises because it is lighter, and comes out at the top. Nice and neat,” says Straneo. “But it’s much more complex than that.”

The fjords contain cold, fresh Arctic water on top and warm, salty waters from the Gulf Stream at the bottom. Melted waters do rise somewhat, but not all the way to the top.

“It’s too dense,” Straneo says. “It actually comes out at the interface where the Arctic water and warm water meet.” This distinction is important, adds Straneo, because it prevents the heat contained in the deep waters from melting the upper third of the glacier. Instead, the glacier develops a floating ice tongue—a shelf of ice that extends from the main body of the glacier out onto the waters of the fjord. The shape of the ice tongue influences the stability of the glacier and how quickly it flows.

In addition, the team found that vigorous currents within the fjord driven by winds and tides also play a part in melting and flow speed. “The currents in the fjord are like waves in a bath tub,” Straneo says. “This oscillation and mixing contribute to heat transport to the glaciers.”

The March 2010 trip marked the first time the researchers were able to observe winter-time conditions in the fjord, which is how the system probably works nine months out of the year.

“One surprise we found was that the warm waters in the fjord are actually 1 degree Celsius warmer in winter, which by Greenland standards is a lot,” Straneo says. “It raises the possibility that winter melt rates might be larger than those in the summer.

“Current climate models do not take these factors into account,” she adds. “We’re just beginning to understand all of the pieces. We need to know more about how the ocean changes at the glaciers edge. It’s critical to improving predictions of future ice sheet variability and sea level rise."

Co-authors of the work include Ruth Curry and Claudia Cenedese of WHOI, David Sutherland of University of Washington, Gordon Hamilton of University of Maine, Leigh Stearns of University of Kansas, and Kjetil Våge of University of Bergen, Norway.

Funding for this research was provided by the National Science Foundation, WHOI's Ocean and Climate Change Institute Arctic Research Initiative, and NASA’s Cryosperic Sciences Program.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment.

Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/page.do?pid=7545&tid=282&cid=95209&ct=162

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>