Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Reveals How Sensitive U.S. East Coast Regions May Be to Ocean Acidification

04.03.2013
A continental-scale chemical survey in the waters of the eastern U.S. and Gulf of Mexico is helping researchers determine how distinct bodies of water will resist changes in acidity.
The study, which measures varying levels of carbon dioxide (CO2) and other forms of carbon in the ocean, was conducted by scientists from 11 institutions across the U.S. and was published in the journal Limnology and Oceanography.

“Before now, we haven't had a very clear picture of acidification status on the east coast of the U.S.,” says Zhaohui ‘Aleck’ Wang, the study’s lead author and a chemical oceanographer at Woods Hole Oceanographic Institution (WHOI). “It’s important that we start to understand it, because increase in ocean acidity could deeply affect marine life along the coast and has important implications for people who rely on aquaculture and fisheries both commercially and recreationally.”

Coastal ocean acidification, Wang says, can occur when excess carbon dioxide is absorbed by, flushed into or generated in coastal waters, setting off a chain of chemical reactions that lowers the water’s pH, making it more acidic. The process disproportionately affects species like oysters, snails, pteropods, and coral, since those organisms cannot effectively form shells in a more acidic environment.

According to the survey, says Wang, different regions of coastal ocean will respond to an influx of CO2 in different ways. “If you put the same amount of CO2 into both the Gulf of Maine and the Gulf of Mexico right now, the ecosystem in the Gulf of Maine would probably feel the effects more dramatically,” he says. “Acidity is already relatively high in that region, and the saturation of calcium carbonate—the mineral that many organisms need to make shells—is particularly low. It’s not a great situation.”

Excess CO2 can enter coastal waters from a variety of different sources, Wang says. One large source is carbon dioxide in the atmosphere, which has been steadily increasing in concentration worldwide for the past hundred and fifty years. The higher those levels of atmospheric CO2 rise, more CO2 gas will be absorbed into seawater by contact, says Wang. Another potential culprit, he notes, is nutrient-rich runoff from land. Rainfall and other surface flows can wash fertilizers and other byproducts of human activities into river systems and ground water, and ultimately, into the coastal ocean, delivering an excess of nutrients and often an explosion of biological activity that can lead to decreased oxygen and increased CO2 and acidity.

“This happens regularly in the Gulf of Mexico,” says Wang. “The Mississippi River dumps enormous amounts of nitrogen and other nutrients into the Gulf, which spawns large algal blooms that lead to production of large amount of organic matter. In the process of decomposing the organic matter, the microbes consume oxygen in the water and leave carbon dioxide behind, making the water more acidic. If this process happens in the Gulf of Maine, the ecosystem there may be even more vulnerable since the Gulf of Maine is a semi-enclosed system and it may take longer time for low pH, low oxygen water to disperse.”

Wang and his colleagues conducted their fieldwork in 2007 aboard the R/V Ronald H. Brown. Starting in the waters off Galveston, Texas, they worked their way around the Louisiana and west Florida coasts, past the Florida Strait, and up the eastern seaboard, collecting samples along nine different transects that ran from the coast to deep ocean off the shelf break, up to 480km (300 miles) offshore.

During the cruise, the researchers measured seawater samples for total dissolved inorganic carbon (DIC), which is made up of a combination of carbonate, bicarbonate, dissolved CO2 and carbonic acid. The team compared this measurement to the water’s total alkalinity, a measure of how much base is in a water sample. The ratio of the two is a marker for water’s ability to “buffer” or resist changes in acidity. Waters with a high ratio of alkalinity to DIC, Wang says, would be less susceptible to acidification than waters that showed a much lower ratio.

After analyzing their data, Wang and colleagues found that, despite a “dead zone” of low oxygen and high acidity outside the mouth of the Mississippi, the Gulf of Mexico on the whole showed a high ratio of alkalinity to DIC, meaning it would be more resistant to acidification. As the team traveled farther north, however, they saw the ratio steadily decreases north of Georgia. The waters in the Gulf of Maine, Wang says, on average had the lowest alkalinity to DIC ratio of any region along the eastern seaboard, meaning that it would be especially vulnerable to acidification should CO2 levels rise in those waters.

While it’s unclear exactly why the ratio of alkalinity to DIC is low in those northern waters, Wang thinks part of the issue may be linked to alkalinity sources to the region. For example, the Labrador Coastal Current brings relatively fresh, low alkalinity water down from the Labrador Sea to the Gulf of Maine and Middle Atlantic Bight.

If this current is the major source of alkalinity to the region, he says, it may mean that the Gulf of Maine’s fate could be linked to changes in global climate that, through melting sea ice and glaciers, increase the flow of fresh water to the Gulf of Maine. However, whether this freshening is accompanied by a decreases in seawater alkalinity and “buffer” capacity remains unknown.

Since the waters of the northeast U.S. are already susceptible to rising acidity, Wang says this raises big questions about how species of marine life—many of which are important to the commercial fishing and shellfish industry there—will fare in the future. “For example, how are oysters going to do? What about other shellfish? If the food chain changes, how are fish going to be impacted?” Wang asks. “There's a whole range of ecological and sociological questions.” There is a great need for need for more robust coastal ocean chemistry monitoring and coastal ocean acidification studies, he adds. A better understanding of the changing chemistry will help fisheries regulators to better manage the stocks.

Also collaborating on the study were Rik Wanninkhof and Tsung-Hung Peng from the National Oceanic and Atmospheric Administration’s Atlantic Oceanographic and Meteorological Laboratory, Wei-Jun Cai and Wei-Jen Huang of the University of Georgia, Robert H. Byrne of the University of South Florida, and Xinping Hu of Texas A&M University - Corpus Christi.

This research was supported by the NOAA Global Carbon Cycle Program.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please visit www.whoi.edu.

Press Office | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>