Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals seasonal patterns of tropical rainfall changes from global warming

16.04.2013
Projections of rainfall changes from global warming have been very uncertain because scientists could not determine how two different mechanisms will impact rainfall.

The two mechanisms turn out to complement each other and together shape the spatial distribution of seasonal rainfall in the tropics, according to the study of a group of Chinese and Hawaii scientists that is published in the April 14, 2013, online issue of Nature Geoscience.

The one mechanism, called "wet-gets-wetter," predicts that rainfall should increase in regions that already have much rain, with a tendency for dry regions to get dryer. The second mechanism, called the "warmer-gets-wetter," predicts rainfall should increase in regions where sea surface temperature rises above the tropical average warming.

The team of scientists compared current rainfall in the tropics with future rainfall projections from simulations of 18 cutting-edge climate models forced with a likely scenario of atmospheric greenhouse gas concentrations. They found that rainfall in the models increases more in regions that currently are already wet and decreases slightly in currently dry regions, supporting the wet-gets-wetter mechanism. But they also found evidence for the warmer-gets-wetter mechanism in that the higher the surface temperature in a region, the more the rainfall. By merging the impact from the two mechanisms, they noted that they could account for nearly 80 percent of the variations in the models' projected rainfall changes from global warming.

The complementary action of the two mechanisms is because the pattern of ocean warming induces more convection and rainfall near the Equator, where the temperature warming peaks, and subsidence and drying further away from the Equator, reflecting the warmer-gets-wetter view. But as this band of increased rain marches back and forth across the Equator with the Sun, it causes seasonal rainfall anomalies that follow the wet-gets-wetter pattern.

The wet-gets-wetter mechanism contributes more to the projected seasonal rainfall changes, whereas the warmer-gets-warmer mechanism more to the mean annual rainfall changes.

"Because our present observations of seasonal rainfall are much more reliable than the future sea surface temperatures, we can trust the models' projections of seasonal mean rainfall for regional patterns more than their annual mean projections," says co-author Shang-Ping Xie, meteorology professor at the International Pacific Research Center, University of Hawaii at Manoa and Roger Revelle Professor at Scripps Institution of Oceanography, University of California at San Diego. "This is good news for monsoon regions where rainfall by definition is seasonal and limited to a short rainy season. Many highly populated countries under monsoon influences already face water shortages."

Citation: Ping Huang, Shang-Ping Xie, Kaiming Hu, Gang Huang, & Ronghui Huang: Patterns of the seasonal response of tropical rainfall to global warming. Nature Geoscience, AOP April 14, 2013, http://dx.doi.org/10.1038/NGEO1792.

The work was supported by the National Basic Research Program of China (2012CB955604 and 2010CB950403), the China Natural Science Foundation (41105047 and 41275083), and the US National Science Foundation.

Author Contact: Shang-Ping Xie, currently at: sxie@ucsd.edu, (858) 822-0053, Scripps Institution of Oceanography.

International Pacific Research Center Media Contact: Gisela E. Speidel, gspeidel@hawaii.edu. (808) 956-9252.

The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii at Manoa, is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>