Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study reveals gas that triggers ozone destruction

14.01.2013
Scientists at the Universities of York and Leeds have made a significant discovery about the cause of the destruction of ozone over oceans.
They have established that the majority of ozone-depleting iodine oxide observed over the remote ocean comes from a previously unknown marine source. The research team found that the principal source of iodine oxide can be explained by emissions of hypoiodous acid (HOI) – a gas not yet considered as being released from the ocean – along with a contribution from molecular iodine (I2).

Since the 1970s when methyl iodide (CH3I) was discovered as ubiquitous in the ocean, the presence of iodine in the atmosphere has been understood to arise mainly from emissions of organic compounds from phytoplankton -- microscopic marine plants.

This new research, which is published in Nature Geoscience, builds on an earlier study which showed that reactive iodine, along with bromine, in the atmosphere is responsible for the destruction of vast amounts of ozone – around 50 per cent more than predicted by the world's most advanced climate models – in the lower atmosphere over the tropical Atlantic Ocean.
The scientists quantified gaseous emissions of inorganic iodine following the reaction of iodide with ozone in a series of laboratory experiments. They showed that the reaction of iodide with ozone leads to the formation of both molecular iodine and hypoiodous acid. Using laboratory models, they show that the reaction of ozone with iodide on the sea surface could account for around 75 per cent of observed iodine oxide levels over the tropical Atlantic Ocean.

Professor Lucy Carpenter, of the Department of Chemistry at York, said: "Our laboratory and modelling studies show that these gases are produced from the reaction of atmospheric ozone with iodide on the sea surface interfacial layer, at a rate which is highly significant for the chemistry of the marine atmosphere.

"Our research reveals an important negative feedback for ozone – a sort of self-destruct mechanism. The more ozone there is, the more gaseous halogens are created which destroy it. The research also has implications for the way that radionucleides of iodine in seawater, released into the ocean mainly from nuclear reprocessing facilities, can be re-emitted into the atmosphere."

Professor John Plane, from the University of Leeds' School of Chemistry, said: "This mechanism of iodine release into the atmosphere appears to be particularly important over tropical oceans, where measurements show that there is more iodide in seawater available to react with ozone. The rate of the process also appears to be faster in warmer water. The negative feedback for ozone should therefore be particularly important for removing ozone in the outflows of pollution from major cities in the coastal tropics."

The research was funded by the UK Natural Environment Research Council SOLAS (Surface Ocean Lower Atmosphere) programme.

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>