Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study projects warming-driven changes in global rainfall

06.05.2013
Global warming may increase the risk for extreme rainfall and drought, according to a new modeling study. The research shows for the first time how rising carbon dioxide concentrations could affect the entire range of rainfall types on Earth.

Analysis of computer simulations from 14 climate models indicates that wet regions of the world, such as the equatorial Pacific Ocean and Asian monsoon regions, will see increases in heavy precipitation because of warming resulting from projected increases in carbon dioxide levels. Arid land areas outside the tropics and many regions with moderate rainfall could become drier.

The analysis provides a new assessment of global warming's impacts on precipitation patterns around the world. The study was accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

"In response to carbon dioxide-induced warming, the global water cycle undergoes a gigantic competition for moisture resulting in a global pattern of increased heavy rain, decreased moderate rain, and prolonged droughts in certain regions," said William Lau of NASA's Goddard Space Flight Center in Greenbelt, Md., who is lead author of the study.

The models project that, for every 0.56 degrees Celsius (1 degree Fahrenheit) of carbon dioxide-induced warming, heavy rainfall will increase globally by 3.9 percent and light rain will increase globally by 1 percent. However, total global rainfall is not projected to change much because moderate rainfall will decrease globally by 1.4 percent.

Focusing their analysis on three types of rainfall, the study authors define heavy rainfall as monthly average precipitation greater than 9 millimeters (0.35 inch) per day. Light rain means a monthly average below 0.3 mm (0.01 of an inch) per day. Between those lies moderate rainfall, defined as a monthly average in the range 0.9mm.- 2.4 mm. (0.04 - 0.09 in.) per day.

Areas projected to see the most significant increase in heavy rainfall are in the tropical zones around the equator, particularly in the Pacific Ocean and Asian monsoon regions.

Some regions outside the tropics may have no rainfall at all. The models also projected for every 0.56 degrees Celsius (1 degree Fahrenheit) of warming, the length of periods with no rain will increase globally by 2.6 percent. In the Northern Hemisphere, areas most likely to be affected include the deserts and arid regions of the southwest United States, Mexico, North Africa, the Middle East, Pakistan, and northwestern China. In the Southern Hemisphere, drought becomes more likely in South Africa, northwestern Australia, coastal Central America and northeastern Brazil.

"Large changes in moderate rainfall, as well as prolonged no-rain events, can have the most impact on society because they occur in regions where most people live," Lau said. "Ironically, the regions of heavier rainfall, except for the Asian monsoon, may have the smallest societal impact because they usually occur over the ocean."

Lau and colleagues based their analysis on the outputs of 14 climate models in simulations of 140-year periods. The simulations began with carbon dioxide concentrations at about 280 parts per million -- similar to pre-industrial levels and well below the current level of almost 400 parts per million -- and then increased by 1 percent per year. The rate of increase is consistent with a "business as usual" trajectory of the greenhouse gas as described by the United Nations' Intergovernmental Panel on Climate Change.

Analyzing the model results, Lau and his co-authors calculated statistics on the rainfall responses for a 27-year control period at the beginning of the simulation, and also for 27-year periods around the time of doubling and tripling of carbon dioxide concentrations.

The model predictions of how much rain will fall at any one location as the climate warms are not very reliable, the authors conclude. "But if we look at the entire spectrum of rainfall types we see all the models agree in a very fundamental way -- projecting more heavy rain, less moderate rain events, and prolonged droughts," Lau said.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/grl.50420/abstract

Visualisation:
An animation accompanies the NASA version of this release at http://go.usa.gov/TQM3.
Title:
“A canonical response of precipitation characteristics to Global Warming from CMIP5 models”
Authors:
William K.-M. Lau Laboratory for Atmospheres, NASA, Goddard Space Flight Center, Greenbelt, Maryland, USA;H.-T. Wu Science Systems and Applications, Inc., Lanham, Maryland, USA; K.-M. Kim Morgan State University, Baltimore, Maryland, USA;

Contact information for the author:

Dr. William K.-M. Lau: office phone: +1 (301) 614-6332, email: William.K.Lau@nasa.gov

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2013/2013-17.shtml

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>