Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study projects warming-driven changes in global rainfall

06.05.2013
Global warming may increase the risk for extreme rainfall and drought, according to a new modeling study. The research shows for the first time how rising carbon dioxide concentrations could affect the entire range of rainfall types on Earth.

Analysis of computer simulations from 14 climate models indicates that wet regions of the world, such as the equatorial Pacific Ocean and Asian monsoon regions, will see increases in heavy precipitation because of warming resulting from projected increases in carbon dioxide levels. Arid land areas outside the tropics and many regions with moderate rainfall could become drier.

The analysis provides a new assessment of global warming's impacts on precipitation patterns around the world. The study was accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

"In response to carbon dioxide-induced warming, the global water cycle undergoes a gigantic competition for moisture resulting in a global pattern of increased heavy rain, decreased moderate rain, and prolonged droughts in certain regions," said William Lau of NASA's Goddard Space Flight Center in Greenbelt, Md., who is lead author of the study.

The models project that, for every 0.56 degrees Celsius (1 degree Fahrenheit) of carbon dioxide-induced warming, heavy rainfall will increase globally by 3.9 percent and light rain will increase globally by 1 percent. However, total global rainfall is not projected to change much because moderate rainfall will decrease globally by 1.4 percent.

Focusing their analysis on three types of rainfall, the study authors define heavy rainfall as monthly average precipitation greater than 9 millimeters (0.35 inch) per day. Light rain means a monthly average below 0.3 mm (0.01 of an inch) per day. Between those lies moderate rainfall, defined as a monthly average in the range 0.9mm.- 2.4 mm. (0.04 - 0.09 in.) per day.

Areas projected to see the most significant increase in heavy rainfall are in the tropical zones around the equator, particularly in the Pacific Ocean and Asian monsoon regions.

Some regions outside the tropics may have no rainfall at all. The models also projected for every 0.56 degrees Celsius (1 degree Fahrenheit) of warming, the length of periods with no rain will increase globally by 2.6 percent. In the Northern Hemisphere, areas most likely to be affected include the deserts and arid regions of the southwest United States, Mexico, North Africa, the Middle East, Pakistan, and northwestern China. In the Southern Hemisphere, drought becomes more likely in South Africa, northwestern Australia, coastal Central America and northeastern Brazil.

"Large changes in moderate rainfall, as well as prolonged no-rain events, can have the most impact on society because they occur in regions where most people live," Lau said. "Ironically, the regions of heavier rainfall, except for the Asian monsoon, may have the smallest societal impact because they usually occur over the ocean."

Lau and colleagues based their analysis on the outputs of 14 climate models in simulations of 140-year periods. The simulations began with carbon dioxide concentrations at about 280 parts per million -- similar to pre-industrial levels and well below the current level of almost 400 parts per million -- and then increased by 1 percent per year. The rate of increase is consistent with a "business as usual" trajectory of the greenhouse gas as described by the United Nations' Intergovernmental Panel on Climate Change.

Analyzing the model results, Lau and his co-authors calculated statistics on the rainfall responses for a 27-year control period at the beginning of the simulation, and also for 27-year periods around the time of doubling and tripling of carbon dioxide concentrations.

The model predictions of how much rain will fall at any one location as the climate warms are not very reliable, the authors conclude. "But if we look at the entire spectrum of rainfall types we see all the models agree in a very fundamental way -- projecting more heavy rain, less moderate rain events, and prolonged droughts," Lau said.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/grl.50420/abstract

Visualisation:
An animation accompanies the NASA version of this release at http://go.usa.gov/TQM3.
Title:
“A canonical response of precipitation characteristics to Global Warming from CMIP5 models”
Authors:
William K.-M. Lau Laboratory for Atmospheres, NASA, Goddard Space Flight Center, Greenbelt, Maryland, USA;H.-T. Wu Science Systems and Applications, Inc., Lanham, Maryland, USA; K.-M. Kim Morgan State University, Baltimore, Maryland, USA;

Contact information for the author:

Dr. William K.-M. Lau: office phone: +1 (301) 614-6332, email: William.K.Lau@nasa.gov

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2013/2013-17.shtml

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>