Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study finds unprecedented warmth in Arctic

The heat is on, at least in the Arctic.

Average summer temperatures in the Eastern Canadian Arctic during the last 100 years are higher now than during any century in the past 44,000 years and perhaps as long ago as 120,000 years, newfound evidence indicates.

Gifford Miller collects long-dead tundra plants exposed by melting of an Arctic ice cap on Baffin Island, Canada. Using radiocarbon dating of plants from the Eastern Canadian Arctic, he and his colleagues have found that average summertime temperatures in the region are currently higher than at any time in the past 44,000 years. Credit: Gifford Miller

As ice caps today recede, like this one nicknamed Sputnik, they expose dead plants killed long ago when the ice cap formed and then preserved ever since by the ice. By carbon-dating the organic material, scientists can determine when the plants lived, thousands of years ago, and infer the average temperatures back then that allowed the plants to thrive. Credit: Gifford Miller

The new research offers the first direct evidence that the present warmth in the Eastern Canadian Arctic exceeds the peak warmth there in the Early Holocene, when solar energy reaching the Northern Hemisphere in summer was roughly 9 percent greater than today, said Gifford Miller of the University of Colorado, Boulder (CU-Boulder), who led the study. The Holocene is a geological epoch that began after Earth’s last glacial period ended roughly 11,700 years ago and which continues today.

Miller and his colleagues used dead moss clumps emerging from receding ice caps on Baffin Island as tiny clocks. At four different ice caps, radiocarbon dates show the mosses had not been exposed to the elements since at least 44,000 to 51,000 years ago.

Since radiocarbon dating is only accurate to about 50,000 years and because Earth’s geological record shows it was in a glaciation stage prior to that time, the indications are that Canadian Arctic temperatures today have not been matched or exceeded for roughly 120,000 years, Miller said.

“The key piece here is just how unprecedented the warming of Arctic Canada is,” said Miller, a geological sciences professor and a fellow at the university’s Institute of Arctic and Alpine Research. “This study really says the warming we are seeing is outside any kind of known natural variability, and it has to be due to increased greenhouse gases in the atmosphere.”

A paper on the subject appeared online Oct. 21 in Geophysical Research Letters, a journal of the American Geophysical Union.

Miller and his colleagues compiled the age distribution of 145 radiocarbon-dated plants in the highlands of Baffin Island that were exposed by ice recession during the year they were collected by the researchers. All samples collected were within 1 meter of the ice caps, which are generally receding by 2 to 3 meters a year. “The oldest radiocarbon dates were a total shock to me,” said Miller.

Located just east of Greenland, the 508,000 square-kilometer (196,000-square-mile) Baffin Island is the fifth largest island in the world. Most of it lies above the Arctic Circle. Many of the ice caps on the highlands of Baffin Island rest on relatively flat terrain, usually frozen to their beds. “Where the ice is cold and thin, it doesn’t flow, so the ancient landscape on which they formed is preserved pretty much intact,” said Miller.

Ice melted by Arctic warming exposed dead plants
As ice caps today recede, like this one nicknamed Sputnik, they expose dead plants killed long ago when the ice cap formed and then preserved ever since by the ice. By carbon-dating the organic material, scientists can determine when the plants lived, thousands of years ago, and infer the average temperatures back then that allowed the plants to thrive. Credit: Gifford Miller

To reconstruct the past climate of Baffin Island beyond the limit of radiocarbon dating, Miller and his team used data from ice cores previously retrieved by international teams from the nearby Greenland Ice Sheet.

The ice cores showed that the youngest time interval from which summer temperatures in the Arctic were plausibly as warm as today is about 120,000 years ago, near the end of the last interglacial period. “We suggest this is the most likely age of these samples,” said Miller.

The new study also showed summer temperatures cooled in the Canadian Arctic by about 2.8 degrees Celsius (5 degrees Fahrenheit) from roughly 5,000 years ago to about 100 years ago – a period that included the Little Ice Age from 1275 to about 1900.

“Although the Arctic has been warming since about 1900, the most significant warming in the Baffin Island region didn’t really start until the 1970s,” said Miller. “And it is really in the past 20 years that the warming signal from that region has been just stunning. All of Baffin Island is melting, and we expect all of the ice caps to eventually disappear, even if there is no additional warming.”

Temperatures across the Arctic have been rising substantially in recent decades as a result of the buildup of greenhouse gases in Earth’s atmosphere. Studies by CU-Boulder researchers in Greenland indicate temperatures on the ice sheet have climbed 3.9 degrees Celsius (7 degrees Fahrenheit) since 1991.

Co-authors on the new study include CU-Boulder Senior Research Associate Scott Lehman, former CU-Boulder doctoral student and now Prescott College Professor Kurt Refsnider, University of California Irvine researcher John Southon and University of Wisconsin, Madison Research Associate Yafang Zhong. The National Science Foundation provided the primary funding for the study.

AGU Contact:
Thomas Sumner
+1 (202) 777-7516
University of Colorado Boulder Contact:
Jim Scott, CU-Boulder media relations
+1 (720) 381-9479
Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this early view article by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Thomas Sumner at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.


“Unprecedented recent summer warmth in Arctic Canada”

Gifford H. Miller, Scott J. Lehman, and Kurt A. Refsnider
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA;
John R. Southon
Earth System Science Dept., University of California Irvine, Irvine, USA;
Yafang Zhong
Center for Climatic Research, University of Wisconsin, Madison, WI, USA.
Contact information for the authors:
Gifford H. Miller, Cell Phone: +1 (303) 990-2071, Office Phone: + 1 (303) 492-6962, Email:

Thomas Sumner | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>