Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Surprising New Pathway for North Atlantic Circulation

15.05.2009
Oceanographers have long known that the 20-year-old paradigm for describing the global ocean circulation– called the Great Ocean Conveyor – was an oversimplification. It’s a useful depiction, but it’s like describing Beethoven’s Fifth Symphony as a catchy tune.

The conveyor belt paradigm says the Gulf Stream-warmed ocean releases heat to the atmosphere in the northern North Atlantic, leaving ocean water colder and denser as it moves north.

The cold waters sink and flow southward along the “deep western boundary current” that hugs the continental slope from Canada to the equator. To replace the down-flowing water, warm surface waters from the tropics are pulled northward along the conveyor’s upper limb.

But while the conveyor belt paradigm establishes the melody, the subtleties and intricacies of the symphony of global ocean circulation largely remain a puzzle.

Now, research led by oceanographers at Woods Hole Oceanographic Institution (WHOI) and Duke University have teased out a new piece of that puzzle, expanding our understanding of this circulation model. Using field observations and computer models, the study shows that much of the southward flow of cold water from the Labrador Sea moves not along the deep western boundary current, but along a previously unknown path in the interior of the North Atlantic.

The study by co-principal authors Amy Bower, a senior scientist in the WHOI Department of Physical Oceanography, and Susan Lozier, a professor of physical oceanography at Duke University’s Nicholas School of the Environment, will be published in the May 14 issue of the research journal Nature.

“This new path is not constrained by the continental shelf. It’s more diffuse,” said Bower. “It’s a swath in the wide-open, turbulent interior of the North Atlantic and much more difficult to access and study.”

And since this cold southward-flowing water is thought to influence and perhaps moderate human-caused climate change, this finding may impact the work of global warming forecasters.

"This finding means it is going to be more difficult to measure climate signals in the deep ocean," Lozier said. "We thought we could just measure them in the Deep Western Boundary Current, but we really can't."

Lozier and Bower first conceived of this program eight years ago. Studies led by Lozier and other researchers had previously suggested cold northern waters might follow such “interior pathways” rather than the conveyor belt in route to subtropical regions of the North Atlantic.

But testing the idea meant developing an elaborate WHOI-led field program involving the launching of 76 special Range and Fixing of Sound (RAFOS) floats into the current south of the Labrador Sea between 2003 to 2006. The ambitious program would have been prohibitively expensive had it not been for a collaboration with Eugene Colbourne of the Northwest Atlantic Fisheries Center in St. Johns, Newfoundland. Colbourne regularly conducts hydrographic surveys around the Grand Banks, and agreed to deploy the team’s RAFOS floats in groups of six every three months for three years.

Bower worked with a team at WHOI to build the floats and develop the plan for their deployment.

The RAFOS floats were configured to submerge at 700 or 1,500 meters depth – within the layer of the ocean where one constituent of the cold southward-flowing water, called Labrador Sea Water, travels. They drifted with the currents for two years, recording location information as well as temperature and pressure measurements once a day. After two years, the floats returned to the surface and transmitted all their data through the ARGOS satellite-based data retrieval system and were downloaded to scientists in the lab.

To communicate with the floats and to track their position, the team deployed anchored low-amplitude sound beacons in the general area of the experiment, which were set to “ping” automatically every day. The RAFOS floats’s onboard hydrophones detect the sound from the beacons, enabling scientists to determine the distance from the float to the beacon, based on the time delay between when the ping went off and when it was detected.

But only 8 percent of the RAFOS floats followed the conveyor belt of the Deep Western Boundary Current (DWBC), according to the Nature report. About 75 percent of them “escaped” that coast-hugging deep underwater pathway and instead drifted into the open ocean before they get around the Grand Banks. Eight percent “is a remarkably low number in light of the expectation that the DWBC is the dominant pathway for Labrador Sea Water,” the researchers wrote.

Since the RAFOS float paths could only be tracked for two years, Lozier, her graduate student Stefan Gary, and German oceanographer Claus Boning also used a modeling program to simulate the launch and dispersal of more than 7,000 virtual “e-floats” from the same starting point.

Subjecting those e-floats to the same underwater dynamics as the real ones, the researchers then traced where they moved. “The spread of the model and the RAFOS float trajectories after two years is very similar,” they reported.

"The new float observations and simulated float trajectories provide evidence that the southward interior pathway is more important for the transport of Labrador Sea Water through the subtropics than the DWBC, contrary to previous thinking," their report concluded.

Next, Bower and Lozier hope to extend their research to study the southward flow of cold water originating even farther north in the Greenland Sea.

This research was supported by the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

http://www.whoi.edu/page.do?pid=7545

WHOI Media Relations | Newswise Science News
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>