Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Findings Have Impact Up and Down Stream

02.08.2010
A University of Arkansas researcher and her colleagues examined streams in urban, agricultural and forested settings and determined that the differences they found may affect how cities try to restore urban streams.

Geosciences researcher Stephanie Shepherd, geosciences professors John C. Dixon and Ralph K. Davis, and graduate student Rose Feinstein report their findings in River Research and Applications.

Shepherd’s work examined the shape of headwater streams, as well as the materials found in them, in cities, on farmland and in forested areas in the Illinois River watershed in northwest Arkansas. She found that the material in streams shifted from gravel in the forested streams to a high percentage of bedrock in the urban streams. Scientists know that urban streams run deeper and faster than forested streams, but until now the reasons haven’t been completely clear.

“The research shows one way that change is occurring in these streams,” Shepherd said. “It also suggests that just making an urban stream look like a forested stream will probably fail.”

To arrive at this conclusion, Shepherd looked at floodplains, measured depths and counted pebbles in streams at several sites in each land use category as determined by land use surveys – urban, agricultural and forest. Forested sites had more sinuous streams than the agricultural or urban sites. The forested streams had meander bends with gravel bars, which were absent in the urban and agricultural streams. Urban streams also ran significantly wider and deeper than those found on farmland and in forests.

The biggest difference between streams occurred in the materials found in the different settings. Urban streams had a lot of exposed bedrock, while agricultural streams had less than 1 percent exposed bedrock and forested streams had no exposed bedrock.

The exposed bedrock in urban streams occurs when cities harden the banks of a stream, create drainage channels or pave and reinforce the landscape surrounding it. This decreases new input into the urban stream. It also forces water into the stream that, in a forested setting, would be absorbed into the ground. This forced water produces high-speed flow, which then moves material such as stones and pebbles through quickly, sometimes scouring the bottom of the stream all the way to the bedrock.

“Streams are not static – materials are moving through them at different velocities all the time,” Shepherd said. “If there are not new gravel inputs in urban streams, we have to think of them as a different system.” Many of the physical characteristics surrounding forested streams, such as large areas of undisturbed soil, cannot be reproduced in an urban setting, she said, so scientists should explore new ways besides simple restoration to mitigate urban streams.

Shepherd and her colleagues work in the department of geosciences in the J. William Fulbright College of Arts and Sciences at the University of Arkansas.

CONTACTS:
Stephanie Shepherd, researcher, geosciences
J. William Fulbright College of Arts and Sciences
479-575-3355, slsheph@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>