Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Findings Have Impact Up and Down Stream

02.08.2010
A University of Arkansas researcher and her colleagues examined streams in urban, agricultural and forested settings and determined that the differences they found may affect how cities try to restore urban streams.

Geosciences researcher Stephanie Shepherd, geosciences professors John C. Dixon and Ralph K. Davis, and graduate student Rose Feinstein report their findings in River Research and Applications.

Shepherd’s work examined the shape of headwater streams, as well as the materials found in them, in cities, on farmland and in forested areas in the Illinois River watershed in northwest Arkansas. She found that the material in streams shifted from gravel in the forested streams to a high percentage of bedrock in the urban streams. Scientists know that urban streams run deeper and faster than forested streams, but until now the reasons haven’t been completely clear.

“The research shows one way that change is occurring in these streams,” Shepherd said. “It also suggests that just making an urban stream look like a forested stream will probably fail.”

To arrive at this conclusion, Shepherd looked at floodplains, measured depths and counted pebbles in streams at several sites in each land use category as determined by land use surveys – urban, agricultural and forest. Forested sites had more sinuous streams than the agricultural or urban sites. The forested streams had meander bends with gravel bars, which were absent in the urban and agricultural streams. Urban streams also ran significantly wider and deeper than those found on farmland and in forests.

The biggest difference between streams occurred in the materials found in the different settings. Urban streams had a lot of exposed bedrock, while agricultural streams had less than 1 percent exposed bedrock and forested streams had no exposed bedrock.

The exposed bedrock in urban streams occurs when cities harden the banks of a stream, create drainage channels or pave and reinforce the landscape surrounding it. This decreases new input into the urban stream. It also forces water into the stream that, in a forested setting, would be absorbed into the ground. This forced water produces high-speed flow, which then moves material such as stones and pebbles through quickly, sometimes scouring the bottom of the stream all the way to the bedrock.

“Streams are not static – materials are moving through them at different velocities all the time,” Shepherd said. “If there are not new gravel inputs in urban streams, we have to think of them as a different system.” Many of the physical characteristics surrounding forested streams, such as large areas of undisturbed soil, cannot be reproduced in an urban setting, she said, so scientists should explore new ways besides simple restoration to mitigate urban streams.

Shepherd and her colleagues work in the department of geosciences in the J. William Fulbright College of Arts and Sciences at the University of Arkansas.

CONTACTS:
Stephanie Shepherd, researcher, geosciences
J. William Fulbright College of Arts and Sciences
479-575-3355, slsheph@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>