Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study attributes varying explosivity to gaseous state within volcanic conduits

13.05.2015

The varying scale and force of certain volcanic eruptions are directly influenced by the distribution of gases within magma inside a volcano's conduit, according to a new study.

Using state of the art equipment including UV cameras and electron microscopes, researchers from Plymouth University led a project to analyse the eruptive plumes and ash generated by Volcán de Colima, the most active volcano in the Americas.


This image of ash and gases exploding from Volcan de Colima was taken by the research team during the study.

Credit: Paul Cole/Plymouth University

Working alongside academics from the University of Cambridge and the Universidad de Colima in Mexico, they documented for the first time marked differences in the vesicularity, crystal characteristics and glass composition in juvenile material from the volcanic explosions.

The results led them to suggest that degassing which occurs during magma ascent leads to a build-up of both fast-ascending gas-rich magma pulses together with slow-ascending gas poor pulses within the volcano's conduit, which in turn determine the explosivity of any resulting eruption.

This particular type of volcanic activity is known as a Vulcanian explosion, and while they are explosive and short-lived, they often see large amounts of ash and magma fired more than 10km into the Earth's atmosphere.

Dr Paul Cole, Lecturer in Geohazards at Plymouth University, said: "Vulcanian explosions can be hazardous, and the purpose of this study is to try and get some understanding of what controls the explosions themselves. Volcan de Colima became active again in 2013, and our concern is that this may be the forerunner to something more serious as it has previously erupted every 100 years or so, with the last major eruption in 1913. With tens of thousands of people living in communities regularly evacuated because of the volcano, any increased knowledge of its activity could obviously have a marked effect."

Vulcanian explosions are among the most common types of volcanic activity observed at silicic volcanoes, and have also recently been in evidence at the Calbuco volcano in Chile.

Magma ascent rates have often been invoked as being the fundamental control on their explosivity, yet until now this factor is poorly constrained, partly due to the rarity of ash samples and low gas fluxes.

For this study, researchers employed a multi-disciplinary approach to address this, measuring sulphur dioxide fluxes emanating from the summit, as well as collecting ash for subsequent quantitative crystal and micro-geochemical analysis.

Dr Cole added: "This research has enhanced our knowledge, but we now need to explore whether the phenomena we have identified here are mirrored elsewhere. The current eruptions at Calbuco in Chile can also further our understanding of this type of activity and assist in our efforts to build a picture of how this gaseous interaction takes place, and the effects it has. Ultimately, it could help in our ongoing efforts to improve safety for communities living in the shadow of volcanoes."

Media Contact

Alan Williams
alan.williams@plymouth.ac.uk
44-175-258-8004

 @PlymUni

http://www.plym.ac.uk 

Alan Williams | EurekAlert!

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>