Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study attributes varying explosivity to gaseous state within volcanic conduits

13.05.2015

The varying scale and force of certain volcanic eruptions are directly influenced by the distribution of gases within magma inside a volcano's conduit, according to a new study.

Using state of the art equipment including UV cameras and electron microscopes, researchers from Plymouth University led a project to analyse the eruptive plumes and ash generated by Volcán de Colima, the most active volcano in the Americas.


This image of ash and gases exploding from Volcan de Colima was taken by the research team during the study.

Credit: Paul Cole/Plymouth University

Working alongside academics from the University of Cambridge and the Universidad de Colima in Mexico, they documented for the first time marked differences in the vesicularity, crystal characteristics and glass composition in juvenile material from the volcanic explosions.

The results led them to suggest that degassing which occurs during magma ascent leads to a build-up of both fast-ascending gas-rich magma pulses together with slow-ascending gas poor pulses within the volcano's conduit, which in turn determine the explosivity of any resulting eruption.

This particular type of volcanic activity is known as a Vulcanian explosion, and while they are explosive and short-lived, they often see large amounts of ash and magma fired more than 10km into the Earth's atmosphere.

Dr Paul Cole, Lecturer in Geohazards at Plymouth University, said: "Vulcanian explosions can be hazardous, and the purpose of this study is to try and get some understanding of what controls the explosions themselves. Volcan de Colima became active again in 2013, and our concern is that this may be the forerunner to something more serious as it has previously erupted every 100 years or so, with the last major eruption in 1913. With tens of thousands of people living in communities regularly evacuated because of the volcano, any increased knowledge of its activity could obviously have a marked effect."

Vulcanian explosions are among the most common types of volcanic activity observed at silicic volcanoes, and have also recently been in evidence at the Calbuco volcano in Chile.

Magma ascent rates have often been invoked as being the fundamental control on their explosivity, yet until now this factor is poorly constrained, partly due to the rarity of ash samples and low gas fluxes.

For this study, researchers employed a multi-disciplinary approach to address this, measuring sulphur dioxide fluxes emanating from the summit, as well as collecting ash for subsequent quantitative crystal and micro-geochemical analysis.

Dr Cole added: "This research has enhanced our knowledge, but we now need to explore whether the phenomena we have identified here are mirrored elsewhere. The current eruptions at Calbuco in Chile can also further our understanding of this type of activity and assist in our efforts to build a picture of how this gaseous interaction takes place, and the effects it has. Ultimately, it could help in our ongoing efforts to improve safety for communities living in the shadow of volcanoes."

Media Contact

Alan Williams
alan.williams@plymouth.ac.uk
44-175-258-8004

 @PlymUni

http://www.plym.ac.uk 

Alan Williams | EurekAlert!

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>