Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stratospheric accomplice for Santa Ana winds and California wildfires

09.07.2015

Southern Californians and writers love to blame the hot, dry Santa Ana winds for tense, ugly moods, and the winds have long been associated with destructive wildfires.

Now, a new study finds that on occasion, the winds have an accomplice with respect to fires, at least: Natural atmospheric events known as stratospheric intrusions, which bring extremely dry air from the upper atmosphere down to the surface, adding to the fire danger effects of the Santa Anas, and exacerbating some air pollution episodes.


This is a satellite image of the smoke on 2 May 2013, the first day of the Springs Fire northwest of Los Angeles.

Credit: NASA

The findings suggest that forecast models with the capacity to predict stratospheric intrusions may provide valuable lead time for agencies to issue air quality alerts and fire weather warnings, or to reallocate firefighting resources before these extreme events occur.

"The atmosphere could give us an early warning for some wildfires," said Andrew Langford, a research chemist at the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory in Boulder, Colorado, and lead author of the study.

Researchers at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) and the Cooperative Institute for Research in Environmental Sciences (CIRES) at CU-Boulder coauthored the work, which has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

The authors took a detailed look at the May 2013 "Springs Fire" that burned 100 square kilometers (25,000 acres) about 75 kilometers (50 miles) northwest of Los Angeles. The researchers used a NOAA forecast model that incorporates satellite observations of ozone, wind data, and other atmospheric information to detect the occurrence of the intrusions.

The analysis showed that in the early hours before the Springs Fire, a tongue of air characteristic of the stratosphere--extremely dry and very high in ozone from the stratosphere's ozone layer--reached to the surface in southern California and extended as far south as Baja California.

The researchers found that ground-based monitoring stations near the fire's origin also confirmed the telltale signs of the intrusion right before the fire broke out: A large drop in relative humidity and a rise in ozone. As the day went on, a combination of factors accelerated the fire: Low humidity, persistent high winds, dry condition of the grasses and other vegetation, clear skies and bright sunlight, and very warm surface temperatures. A few days later, cloudy skies, a drop in temperature, a shift in winds, and widespread rainfall helped extinguish the fire.

The stratospheric intrusion also had another downside during the Springs Fire: It added ozone from the upper atmosphere to the urban and fire-related pollution produced in the lower atmosphere. On the second and third days of the fire, this helped to push levels of ozone--which can harm people's lungs and damage crops--over the federal ozone limit at 24 monitoring sites across southern California. Monitors as far away as Las Vegas also saw a spike in ozone on the third day of the fire. The observed exceedances of the ozone standard were unusual for the region for that time period, suggesting that the stratospheric intrusions were a contributing factor.

"Stratospheric intrusions are double trouble for Southern California," said Langford. "We knew that the intrusions can add to surface ozone pollution. Now we know that they also can contribute to the fire danger, particularly during La Niña years when deep intrusions are more frequent, as recently shown by our NOAA colleagues at the Geophysical Fluid Dynamics Laboratory. The good news is that with models and observations, we can get an early warning from the atmosphere in some cases."

The authors note that stratospheric intrusions have previously been implicated in the explosive development of wildland fires in New Jersey and Michigan, but have not previously been connected to fires in southern California or to the Santa Ana winds. The frequent occurrence of stratospheric intrusions above the west coast during the fall, winter, and spring suggests that similar circumstances may have played a role in other major southern California fires, including the series of destructive fires that burned more than 3,000 square kilometers (more than 800,000 acres) in October of 2003, and burned about 4,000 square kilometers (nearly a million acres) in October of 2007, say the authors.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

CIRES is a partnership of NOAA and CU-Boulder.

AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

CIRES Contact:
Katy Human
+1 (303) 735-0196
Kathleen.human@colorado.edu

NOAA Contact:
Monica Allen
+1 (301) 734-1123
Monica.Allen@noaa.gov

Media Contact

Nanci Bompey
nbompey@agu.org
202-777-7524

 @theagu

http://www.agu.org

Nanci Bompey | EurekAlert!

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>