Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storm Killers: LSU’s Earth Scan Lab Tracks Cold Water Upwellings in Gulf

01.10.2009
Cold water cyclones may have strong impact on hurricane intensity and activity

Complex interactions between the ocean and overlying atmosphere cause hurricanes to form, and also have a tremendous amount of influence on the path, intensity and duration of a hurricane or tropical weather event.

As researchers develop new ways to better understand and predict the nature of individual storms, a largely unstudied phenomenon has caught the attention of scientists at LSU’s Earth Scan Laboratory, or ESL. Cool water upwellings occurring within ocean cyclones following alongside and behind hurricanes are sometimes strong enough to reduce the strength of hurricanes as they cross paths.

“Ocean cyclones are areas of upwelling, meaning that cold water is not far from the surface as compared to the water surrounding it,” said Nan Walker, ESL director. “The Gulf of Mexico is full of ocean cyclones, or cold water eddies, many of which move rapidly around the margin of Gulf’s Loop Current, which is the main source of water for the Gulf Stream.”

While the upwelling is important to Gulf fisheries because it delivers nutrients into the surface waters, causing algal blooms and attracting marine life to the areas, oceanographers have recently begun to realize that these cyclones intensify currents near the surface and along the bottom of the ocean in areas of gas and oil exploration.

“Now,” Walker added, “our research has shown that ocean cyclones also provide temperatures cold enough to reduce the intensity of large Gulf of Mexico hurricanes.”

Walker’s research team has been looking into the upwelling phenomena since 2004, when they were able to use satellite data received at the ESL to view ocean temperatures soon after Hurricane Ivan’s Gulf crossing.

“Clear skies gave us a rare opportunity to really analyze the oceanic conditions surrounding the wake of Ivan,” said Walker. “We saw abnormally low temperatures in two large areas along the storm’s track, where minimum temperatures were well below those required to support a hurricane, about 80 degrees Fahrenheit.” This suggested to Walker that areas of extreme cooling could be providing immediate negative feedback to Gulf hurricanes, decreasing their intensity.

“In Ivan’s case, we found that its wind field increased the counter-clockwise spinning of the ocean cyclones in its path, catapulting cold water to the surface, which in turn reduced the oceanic ‘fuel’ needed for the hurricane to maintain its strength,” said Walker. She observed that Ivan’s intensity decreased as it moved toward the Mississippi/Alabama coast, despite the presence of a large warm eddy, a feature generally known for its potential to increase hurricane strength. Thus, the impact of the cold eddies overwhelmed that of the warm eddy.

“Cool wakes are most beneficial when the storm occurs later in the season because the Gulf doesn’t warm as rapidly in fall and may not have time to warm back up,” said Walker.

The research being conducted at ESL could eventually lead to novel new weather study techniques.

“Our research, in collaboration with Robert Leben at the University of Colorado, is providing an advanced monitoring system so that likely ocean impacts can be assessed in advance of the Gulf crossing,” said Walker. “However, it is important to remember that we don’t predict; we provide valuable information that serves as tools for those in the business of predicting, such as the National Hurricane Center.”

Of course, this is only one facet of the work done at LSU’s ESL. The lab has played a major role in mapping hurricane-related flooding, tracking oil spills and determining causes for the size and location of dead zones in the Gulf of Mexico, along with many other tasks employing satellite imagery.

ESL was founded more than 20 years ago, and employs undergraduate students, many of whom stay on with the lab throughout their entire college career. The lab’s Web site, http://www.esl.lsu.edu/home/, serves as a wealth of information for researchers, students and the general public. It includes real-time imagery of atmospheric, oceanic and coastal conditions, detailed records of recent and past hurricanes, as well as various types of ocean imagery and research summaries. ESL is part of LSU’s Coastal Studies Institute and the Department of Oceanography and Coastal Sciences in the university’s School of the Coast & Environment.

Ashley Berthelot | EurekAlert!
Further information:
http://www.lsu.edu

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>