Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storm Chasers of Utah: Radar Truck Seeks Wasatch Snow, Rain

11.11.2011
A truck-mounted radar dish often used to chase Midwest tornadoes is getting a workout in Utah this month as University of Utah meteorologists use it to get an unprecedented look inside snow and rain storms over the Salt Lake Valley and the surrounding Wasatch and Oquirrh mountains.

“For students who love snow, it’s every bit as thrilling as chasing tornadoes,” says avid skier and atmospheric sciences Professor Jim Steenburgh. “That’s why we call it storm chasing, Utah style.”

The Storm Chasing Utah Style Study, SCHUSS – the term for a straight, downhill ski run – makes use of a Doppler on Wheels (DOW) radar truck operated by the Center for Severe Weather Research in Boulder, Colo., for the National Science Foundation.

“We have never been able to examine the ‘guts’ of Wasatch winter storms like we can with the Doppler on Wheels radar that is presently here in Salt Lake City,” Steenburgh wrote recently in his Wasatch Weather Weenies blog. “In particular, we can take a meteorological CAT scan of winter storms to see their inner workings.”

The Doppler on Wheels truck arrived in Salt Lake City on Oct. 21 and will be here until Nov. 21. During Oct. 22-23, a dozen University of Utah graduate students were trained to drive the truck and use the 6-foot-diameter radar dish transmitter and receiver.

The portable “X-band polarimetric Doppler radar” system was developed originally for studying tornadoes, and Steenburgh says it “measured the strongest wind ever recorded during the Moore, Okla., tornado” in 1999 – clocked at 318 mph

The truck’s radar emits and receives radio waves horizontally and vertically. This provides more information than radars used by the National Weather Service, which plans to upgrade to the new radars in the next few years.

Steenburgh says the DOW radar can distinguish the size and shape of snowflakes and raindrops in a storm, can collect data on lower-elevation valley locations and can park closer to storms and thus get more detail.

“Despite improvements in weather forecasting over the past few decades, winter storms in Utah remain a challenge to predict,” Steenburgh says. “Unlike radars used for weather forecasting, the Doppler on Wheels can be placed anywhere during a storm, enabling us to peer into storms and uncover their secrets. The information we collect can be used to better understand lake-effect, mountain and other Utah storms, and improve computer models used for weather prediction.”

When the truck is used to chase tornadoes, “you are constantly driving,” he says. “We don’t move it around a lot. We let the storm come to us. … But in a long-lived, multiday storm, we would probably move it as the storm characteristics change.”

Steenburgh hopes the truck’s radar can be used to study eight to 10 storms during its time in Utah, although there haven’t been many so far. As of Nov. 10, the radar truck has been deployed for five weather events:

-- The radar truck was parked at Lake Point on Interstate-80 and used to look at the structure of a dry, cold front that moved across the Great Salt Lake Oct. 24-25.

-- From an observation point on State Route 111 on the west side of the Salt Lake Valley, the radar observed puffy cumulus clouds over the Wasatch Range on Oct. 26.

-- On Oct. 30, the radar was deployed to observe breezes blowing southward off the Great Salt Lake and into Rush Valley.

-- Parked again on SR-111, the radar truck watched as a cold front with rain and snow moved over the Salt Lake Valley on Nov. 1. The radar captured a burst of heavy snow over Twin Peaks in the Wasatch Range, and got unprecedented images of the “transition zone” where falling snowflakes turn to raindrops. The exact elevation of the transition zone is critical to forecasting if a city like Salt Lake will experience weather of 32 degrees Fahrenheit with heavy snow or 35 degrees with rain.

“The truck is teaching our students with a new kind of radar to better determine where the snow level is and where precipitation is transitioning from rain to snow, which is a big piece of figuring out how much snow is going to fall at any particular location,” Steenburgh says.

-- A big snowstorm, with some snow enhanced by the Great Salt Lake’s “lake effect,” was captured by the radar truck on Nov. 4 and 5 as it dumped several inches of snow on Salt Lake City and other Wasatch Front cities. University of Utah students pulled an all-nighter in the truck making measurements of the storm.

“We got an unprecedented data set on the lake effect snow that fell Saturday morning,” Steenburgh says. “It was phenomenal.”

Steenburgh’s enthusiasm for bad weather comes across in his blog. During the Nov. 1 storm, he told his students: “Just ooh and ahh as you see precipitation bands moving across the mountains.” And when the snow started flying Nov. 4, he wrote: “We now have data flowing in from this storm. So psyched.”

A video showing radar images of a Nov. 5 lake-effect snowband (orange) moving from the southeastern Great Salt Lake to the Wasatch Range (red) may be downloaded from:

http://www.inscc.utah.edu/~steenburgh/SCHUSS-IMAGES/dowlakebandloop.mov

A video showing the Nov. 5 lake-effect snowband (orange), first in birds-eye-view, and then moving to a horizontal view from the northeast, maybe downloaded from:

http://www.inscc.utah.edu/~steenburgh/SCHUSS-IMAGES/dowlakebandinvertical.mov

Additional photos related to this news release may be downloaded from:
http://www.inscc.utah.edu/~alcott/dow/dow.html
Jim Steenburgh’s Wasatch Weather Weenies blog: http://wasatchweatherweenies.blog spot.com

Website of the Center for Severe Weather Research: http://www.cswr.org/

University of Utah Public Relations
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Lee Siegel | Newswise Science News
Further information:
http://www.unews.utah.edu
http://www.cswr.org/

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>