Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storm Chasers of Utah: Radar Truck Seeks Wasatch Snow, Rain

11.11.2011
A truck-mounted radar dish often used to chase Midwest tornadoes is getting a workout in Utah this month as University of Utah meteorologists use it to get an unprecedented look inside snow and rain storms over the Salt Lake Valley and the surrounding Wasatch and Oquirrh mountains.

“For students who love snow, it’s every bit as thrilling as chasing tornadoes,” says avid skier and atmospheric sciences Professor Jim Steenburgh. “That’s why we call it storm chasing, Utah style.”

The Storm Chasing Utah Style Study, SCHUSS – the term for a straight, downhill ski run – makes use of a Doppler on Wheels (DOW) radar truck operated by the Center for Severe Weather Research in Boulder, Colo., for the National Science Foundation.

“We have never been able to examine the ‘guts’ of Wasatch winter storms like we can with the Doppler on Wheels radar that is presently here in Salt Lake City,” Steenburgh wrote recently in his Wasatch Weather Weenies blog. “In particular, we can take a meteorological CAT scan of winter storms to see their inner workings.”

The Doppler on Wheels truck arrived in Salt Lake City on Oct. 21 and will be here until Nov. 21. During Oct. 22-23, a dozen University of Utah graduate students were trained to drive the truck and use the 6-foot-diameter radar dish transmitter and receiver.

The portable “X-band polarimetric Doppler radar” system was developed originally for studying tornadoes, and Steenburgh says it “measured the strongest wind ever recorded during the Moore, Okla., tornado” in 1999 – clocked at 318 mph

The truck’s radar emits and receives radio waves horizontally and vertically. This provides more information than radars used by the National Weather Service, which plans to upgrade to the new radars in the next few years.

Steenburgh says the DOW radar can distinguish the size and shape of snowflakes and raindrops in a storm, can collect data on lower-elevation valley locations and can park closer to storms and thus get more detail.

“Despite improvements in weather forecasting over the past few decades, winter storms in Utah remain a challenge to predict,” Steenburgh says. “Unlike radars used for weather forecasting, the Doppler on Wheels can be placed anywhere during a storm, enabling us to peer into storms and uncover their secrets. The information we collect can be used to better understand lake-effect, mountain and other Utah storms, and improve computer models used for weather prediction.”

When the truck is used to chase tornadoes, “you are constantly driving,” he says. “We don’t move it around a lot. We let the storm come to us. … But in a long-lived, multiday storm, we would probably move it as the storm characteristics change.”

Steenburgh hopes the truck’s radar can be used to study eight to 10 storms during its time in Utah, although there haven’t been many so far. As of Nov. 10, the radar truck has been deployed for five weather events:

-- The radar truck was parked at Lake Point on Interstate-80 and used to look at the structure of a dry, cold front that moved across the Great Salt Lake Oct. 24-25.

-- From an observation point on State Route 111 on the west side of the Salt Lake Valley, the radar observed puffy cumulus clouds over the Wasatch Range on Oct. 26.

-- On Oct. 30, the radar was deployed to observe breezes blowing southward off the Great Salt Lake and into Rush Valley.

-- Parked again on SR-111, the radar truck watched as a cold front with rain and snow moved over the Salt Lake Valley on Nov. 1. The radar captured a burst of heavy snow over Twin Peaks in the Wasatch Range, and got unprecedented images of the “transition zone” where falling snowflakes turn to raindrops. The exact elevation of the transition zone is critical to forecasting if a city like Salt Lake will experience weather of 32 degrees Fahrenheit with heavy snow or 35 degrees with rain.

“The truck is teaching our students with a new kind of radar to better determine where the snow level is and where precipitation is transitioning from rain to snow, which is a big piece of figuring out how much snow is going to fall at any particular location,” Steenburgh says.

-- A big snowstorm, with some snow enhanced by the Great Salt Lake’s “lake effect,” was captured by the radar truck on Nov. 4 and 5 as it dumped several inches of snow on Salt Lake City and other Wasatch Front cities. University of Utah students pulled an all-nighter in the truck making measurements of the storm.

“We got an unprecedented data set on the lake effect snow that fell Saturday morning,” Steenburgh says. “It was phenomenal.”

Steenburgh’s enthusiasm for bad weather comes across in his blog. During the Nov. 1 storm, he told his students: “Just ooh and ahh as you see precipitation bands moving across the mountains.” And when the snow started flying Nov. 4, he wrote: “We now have data flowing in from this storm. So psyched.”

A video showing radar images of a Nov. 5 lake-effect snowband (orange) moving from the southeastern Great Salt Lake to the Wasatch Range (red) may be downloaded from:

http://www.inscc.utah.edu/~steenburgh/SCHUSS-IMAGES/dowlakebandloop.mov

A video showing the Nov. 5 lake-effect snowband (orange), first in birds-eye-view, and then moving to a horizontal view from the northeast, maybe downloaded from:

http://www.inscc.utah.edu/~steenburgh/SCHUSS-IMAGES/dowlakebandinvertical.mov

Additional photos related to this news release may be downloaded from:
http://www.inscc.utah.edu/~alcott/dow/dow.html
Jim Steenburgh’s Wasatch Weather Weenies blog: http://wasatchweatherweenies.blog spot.com

Website of the Center for Severe Weather Research: http://www.cswr.org/

University of Utah Public Relations
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Lee Siegel | Newswise Science News
Further information:
http://www.unews.utah.edu
http://www.cswr.org/

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>