Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storm Chasers of Utah: Radar Truck Seeks Wasatch Snow, Rain

11.11.2011
A truck-mounted radar dish often used to chase Midwest tornadoes is getting a workout in Utah this month as University of Utah meteorologists use it to get an unprecedented look inside snow and rain storms over the Salt Lake Valley and the surrounding Wasatch and Oquirrh mountains.

“For students who love snow, it’s every bit as thrilling as chasing tornadoes,” says avid skier and atmospheric sciences Professor Jim Steenburgh. “That’s why we call it storm chasing, Utah style.”

The Storm Chasing Utah Style Study, SCHUSS – the term for a straight, downhill ski run – makes use of a Doppler on Wheels (DOW) radar truck operated by the Center for Severe Weather Research in Boulder, Colo., for the National Science Foundation.

“We have never been able to examine the ‘guts’ of Wasatch winter storms like we can with the Doppler on Wheels radar that is presently here in Salt Lake City,” Steenburgh wrote recently in his Wasatch Weather Weenies blog. “In particular, we can take a meteorological CAT scan of winter storms to see their inner workings.”

The Doppler on Wheels truck arrived in Salt Lake City on Oct. 21 and will be here until Nov. 21. During Oct. 22-23, a dozen University of Utah graduate students were trained to drive the truck and use the 6-foot-diameter radar dish transmitter and receiver.

The portable “X-band polarimetric Doppler radar” system was developed originally for studying tornadoes, and Steenburgh says it “measured the strongest wind ever recorded during the Moore, Okla., tornado” in 1999 – clocked at 318 mph

The truck’s radar emits and receives radio waves horizontally and vertically. This provides more information than radars used by the National Weather Service, which plans to upgrade to the new radars in the next few years.

Steenburgh says the DOW radar can distinguish the size and shape of snowflakes and raindrops in a storm, can collect data on lower-elevation valley locations and can park closer to storms and thus get more detail.

“Despite improvements in weather forecasting over the past few decades, winter storms in Utah remain a challenge to predict,” Steenburgh says. “Unlike radars used for weather forecasting, the Doppler on Wheels can be placed anywhere during a storm, enabling us to peer into storms and uncover their secrets. The information we collect can be used to better understand lake-effect, mountain and other Utah storms, and improve computer models used for weather prediction.”

When the truck is used to chase tornadoes, “you are constantly driving,” he says. “We don’t move it around a lot. We let the storm come to us. … But in a long-lived, multiday storm, we would probably move it as the storm characteristics change.”

Steenburgh hopes the truck’s radar can be used to study eight to 10 storms during its time in Utah, although there haven’t been many so far. As of Nov. 10, the radar truck has been deployed for five weather events:

-- The radar truck was parked at Lake Point on Interstate-80 and used to look at the structure of a dry, cold front that moved across the Great Salt Lake Oct. 24-25.

-- From an observation point on State Route 111 on the west side of the Salt Lake Valley, the radar observed puffy cumulus clouds over the Wasatch Range on Oct. 26.

-- On Oct. 30, the radar was deployed to observe breezes blowing southward off the Great Salt Lake and into Rush Valley.

-- Parked again on SR-111, the radar truck watched as a cold front with rain and snow moved over the Salt Lake Valley on Nov. 1. The radar captured a burst of heavy snow over Twin Peaks in the Wasatch Range, and got unprecedented images of the “transition zone” where falling snowflakes turn to raindrops. The exact elevation of the transition zone is critical to forecasting if a city like Salt Lake will experience weather of 32 degrees Fahrenheit with heavy snow or 35 degrees with rain.

“The truck is teaching our students with a new kind of radar to better determine where the snow level is and where precipitation is transitioning from rain to snow, which is a big piece of figuring out how much snow is going to fall at any particular location,” Steenburgh says.

-- A big snowstorm, with some snow enhanced by the Great Salt Lake’s “lake effect,” was captured by the radar truck on Nov. 4 and 5 as it dumped several inches of snow on Salt Lake City and other Wasatch Front cities. University of Utah students pulled an all-nighter in the truck making measurements of the storm.

“We got an unprecedented data set on the lake effect snow that fell Saturday morning,” Steenburgh says. “It was phenomenal.”

Steenburgh’s enthusiasm for bad weather comes across in his blog. During the Nov. 1 storm, he told his students: “Just ooh and ahh as you see precipitation bands moving across the mountains.” And when the snow started flying Nov. 4, he wrote: “We now have data flowing in from this storm. So psyched.”

A video showing radar images of a Nov. 5 lake-effect snowband (orange) moving from the southeastern Great Salt Lake to the Wasatch Range (red) may be downloaded from:

http://www.inscc.utah.edu/~steenburgh/SCHUSS-IMAGES/dowlakebandloop.mov

A video showing the Nov. 5 lake-effect snowband (orange), first in birds-eye-view, and then moving to a horizontal view from the northeast, maybe downloaded from:

http://www.inscc.utah.edu/~steenburgh/SCHUSS-IMAGES/dowlakebandinvertical.mov

Additional photos related to this news release may be downloaded from:
http://www.inscc.utah.edu/~alcott/dow/dow.html
Jim Steenburgh’s Wasatch Weather Weenies blog: http://wasatchweatherweenies.blog spot.com

Website of the Center for Severe Weather Research: http://www.cswr.org/

University of Utah Public Relations
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Lee Siegel | Newswise Science News
Further information:
http://www.unews.utah.edu
http://www.cswr.org/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>