Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stone ships show signs of maritime network in Baltic Sea region 3000 years ago

25.03.2013
In the middle of the Bronze Age, around 1000 BC, the amount of metal objects increased dramatically in the Baltic Sea region. Around the same time, a new type of stone monument, arranged in the form of ships, started to appear along the coasts. New research from the University of Gothenburg, Sweden shows that the stone ships were built by maritime groups.
The maritime groups were part of a network that extended across large parts of northern Europe. The network was maintained largely because of the strong dependence on bronze.

Archaeologists have long assumed that bronze was imported to Scandinavia from the south, and recent analyses have been able to confirm this notion. The distribution of bronze objects has been discussed frequently, with most analyses focusing on the links in the networks. The people behind the networks, however, are only rarely addressed, not to mention their meeting places.

‘One reason why the meeting places of the Bronze Age are not discussed very often is that we haven’t been able to find them. This is in strong contrast to the trading places of the Viking Age, which have been easy to locate as they left behind such rich archaeological material,’ says the author of the thesis Joakim Wehlin from the University of Gothenburg and Gotland University.

In his thesis, Wehlin has analysed the archaeological material from the Bronze Age stone ships and their placement in the landscape. The stone ships can be found across the entire Baltic Sea region and especially on the larger islands, with a significant cluster on the Swedish island of Gotland. The ships have long been thought to have served as graves for one or several individuals, and have for this reason often been viewed as death ships intended to take the deceased to the afterlife.
‘My study shows a different picture. It seems like the whole body was typically not buried in the ship, and some stone ships don’t even have graves in them. Instead, they sometimes show remains of other types of activities. So with the absence of the dead, the traces of the survivors tend to appear.’

One of Wehlin’s conclusions is that the stone ships and the activities that took place there point to people who were strongly focused on maritime practice. Details in the ships indicate that they were built to represent real ships. Wehlin says that the stone ships give clues about the ship-building techniques of the time and therefore about the ships that sailed on the Baltic Sea during the Bronze Age.

By studying the landscape, Wehlin has managed to locate a number of meeting places, or early ports.

‘These consist of areas that resemble hill forts and are located near easily accessible points in the landscape – that is, near well-known waterways leading inland. While these areas have previously been thought to be much younger, recent age determinations have dated them to the Bronze Age.’

The thesis offers a very extensive account of the stone ships. It also suggests that the importance of the Baltic Sea during the Scandinavian Bronze Age, not least as a waterway, has been underestimated in previous research.

Contact:
Joakim Wehlin,
phone: +46 (0)703-469776,
e-mail: joakim.wehlin@archaeology.gu.se

Annika Koldenius | idw
Further information:
http://www.gu.se

Further reports about: Baltic Sea Bronze Bronze Age Stone sea snails

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>