Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Still-fresh remnants of Exxon Valdez oil protected by boulders

27.02.2014

Twenty-five years after the infamous Exxon Valdez oil spill in Prince William Sound, beaches on the Alaska Peninsula hundreds of kilometers from the incident still harbor small hidden pockets of surprisingly unchanged oil, according to new research being presented here today.

The focus of the study is to learn how oil persists long after a spill. Researchers presenting the work caution that the amount of oil being studied is a trace of what was originally spilled and that results from these sites cannot be simply extrapolated to the entire spill area.


Oil trapped between rocks on a beach in the Gulf of Alaska. New research being presented at the Ocean Sciences Meeting finds that beaches on the Alaska Peninsula hundreds of kilometers from the site of the 1989 Exxon Valdez oil spill still harbor small hidden pockets of oil. Credit: Gail Irvine, USGS

The rocky, high-energy coastlines in the Shelikof Strait, southwest of the spill, contain small remnants of the spill which appear to be protected by a stable boulder and cobble “armor,” says Gail Irvine of the U.S. Geological Survey’s Alaska Science Center. “To have oil there after 23 years is remarkable,” said Irvine. “We have these marked boulders whose movement we’ve been studying for more than 18 years. The oil itself has hardly weathered and is similar to 11-day-old oil.”

The oil was positively identified as that from the Exxon Valdez by chemists at the National Oceanic and Atmospheric Administration’s Auke Bay Laboratory and in Christopher Reddy’s lab at Woods Hole Oceanographic Institution, which specializes in investigating oil spills of all kinds – particularly those which are decades old.

“Very old oil spills can be found to still have oil,” said Reddy. “We were capable of fingerprinting that oil.”

The new findings from this study – about where oil can persist and which chemical compounds in the oil are more and less durable – offer some “silver linings” to the disastrous spill, said Reddy. The researchers are presenting the new research today at the 2014 Ocean Sciences Meeting co-sponsored by the Association for the Sciences of Limnology and Oceanography, The Oceanography Society and the American Geophysical Union.

“One lesson is that if you are responsible for cleaning up a spill, you want to be proactive about cleanup behind the boulders,” said Reddy. Another is that response efforts should try to prevent oil from stranding in these areas where oil may persist for years or decades.

“We are taking advantage of these samples as a natural laboratory,” he said.

Notes for Journalists:

The researchers on this study will present a poster about their work on Wednesday 26 February 2014 at the Ocean Sciences Meeting. The meeting is taking place from 23 – 28 February at the Hawaii Convention Center in Honolulu. For more information for members of the news media, please go to http://www.sgmeet.com/osm2014/media.asp.

Below is an abstract of the presentation. The presentation is part of Session 047: Natural and anthropogenic changes in Coastal Ecosystems and their impact on human welfare. Poster presentations for this session will take place Wednesday 26 February from 4 p.m. to 6 p.m. local Hawaii time in the Poster/Exhibit Hall located in Kamehameha Hall III.

Title:
Exxon Valdez Oil after 23 Years on Rocky Shores in the Gulf of Alaska: Boulder Armor Stability and Persistence of Slightly Weathered Oil

Poster presentation
Session #:047
Date: 26 February 2014
Time: 4:00 p.m. to 6:00 p.m.
Location: Poster/Exhibit Hall

Authors:
Irvine, G. V., U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA;

Mann, D. H., University of Alaska, Fairbanks, AK, USA;

Carls, M., NOAA, Auke Bay Laboratories, Juneau, AK, USA;

Reddy, C., Woods Hole Oceanographic Institution, Woods Hole, MA, USA;

Nelson, R. K., Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

Abstract:
Twenty-three years after the 1989 Exxon Valdez, spill, oil deposited as mousse persists on rocky shores of national parks in the Gulf of Alaska, distant from the spill origin. Oil persistence is highly dependent on the stability of the boulder armors, some of which have remained intact for 20+ years. Surface oiling has declined to very low levels while subsurface oiling continues relatively unchanged at 4 of the 6 sites. Deployment of passive samplers at 2 sites revealed that some oil constituents are moving into the water. At 4 sites, the oil is only slightly weathered. Comprehensive two-dimensional gas chromatographic (GC x GC) analyses have significantly increased the discrimination of oil compounds; especially pertinent is enhanced resolution of biomarkers, useful for the identification of oil source. Thin-layer chromatography-flame ionization detection analyses indicate no significant accumulation of recalcitrant oxygenated hydrocarbons at 4 of the sites, consistent with only minor oil weathering.

Contact information for the researchers:
Gail Irvine, +1 (907) 268-7606, gvirvine@gmail.com 

Chris Reddy, +1 (858) 414-6787, creddy@whoi.edu

AGU Contact:

Mary Catherine Adams
+1 (202) 412-0889
mcadams@agu.org

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

Further reports about: Alaska Exxon Valdez Oil Spills Geological Gulf Ocean Oceanographic Oceanography analyses compounds

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>