Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Still-fresh remnants of Exxon Valdez oil protected by boulders

27.02.2014

Twenty-five years after the infamous Exxon Valdez oil spill in Prince William Sound, beaches on the Alaska Peninsula hundreds of kilometers from the incident still harbor small hidden pockets of surprisingly unchanged oil, according to new research being presented here today.

The focus of the study is to learn how oil persists long after a spill. Researchers presenting the work caution that the amount of oil being studied is a trace of what was originally spilled and that results from these sites cannot be simply extrapolated to the entire spill area.


Oil trapped between rocks on a beach in the Gulf of Alaska. New research being presented at the Ocean Sciences Meeting finds that beaches on the Alaska Peninsula hundreds of kilometers from the site of the 1989 Exxon Valdez oil spill still harbor small hidden pockets of oil. Credit: Gail Irvine, USGS

The rocky, high-energy coastlines in the Shelikof Strait, southwest of the spill, contain small remnants of the spill which appear to be protected by a stable boulder and cobble “armor,” says Gail Irvine of the U.S. Geological Survey’s Alaska Science Center. “To have oil there after 23 years is remarkable,” said Irvine. “We have these marked boulders whose movement we’ve been studying for more than 18 years. The oil itself has hardly weathered and is similar to 11-day-old oil.”

The oil was positively identified as that from the Exxon Valdez by chemists at the National Oceanic and Atmospheric Administration’s Auke Bay Laboratory and in Christopher Reddy’s lab at Woods Hole Oceanographic Institution, which specializes in investigating oil spills of all kinds – particularly those which are decades old.

“Very old oil spills can be found to still have oil,” said Reddy. “We were capable of fingerprinting that oil.”

The new findings from this study – about where oil can persist and which chemical compounds in the oil are more and less durable – offer some “silver linings” to the disastrous spill, said Reddy. The researchers are presenting the new research today at the 2014 Ocean Sciences Meeting co-sponsored by the Association for the Sciences of Limnology and Oceanography, The Oceanography Society and the American Geophysical Union.

“One lesson is that if you are responsible for cleaning up a spill, you want to be proactive about cleanup behind the boulders,” said Reddy. Another is that response efforts should try to prevent oil from stranding in these areas where oil may persist for years or decades.

“We are taking advantage of these samples as a natural laboratory,” he said.

Notes for Journalists:

The researchers on this study will present a poster about their work on Wednesday 26 February 2014 at the Ocean Sciences Meeting. The meeting is taking place from 23 – 28 February at the Hawaii Convention Center in Honolulu. For more information for members of the news media, please go to http://www.sgmeet.com/osm2014/media.asp.

Below is an abstract of the presentation. The presentation is part of Session 047: Natural and anthropogenic changes in Coastal Ecosystems and their impact on human welfare. Poster presentations for this session will take place Wednesday 26 February from 4 p.m. to 6 p.m. local Hawaii time in the Poster/Exhibit Hall located in Kamehameha Hall III.

Title:
Exxon Valdez Oil after 23 Years on Rocky Shores in the Gulf of Alaska: Boulder Armor Stability and Persistence of Slightly Weathered Oil

Poster presentation
Session #:047
Date: 26 February 2014
Time: 4:00 p.m. to 6:00 p.m.
Location: Poster/Exhibit Hall

Authors:
Irvine, G. V., U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA;

Mann, D. H., University of Alaska, Fairbanks, AK, USA;

Carls, M., NOAA, Auke Bay Laboratories, Juneau, AK, USA;

Reddy, C., Woods Hole Oceanographic Institution, Woods Hole, MA, USA;

Nelson, R. K., Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

Abstract:
Twenty-three years after the 1989 Exxon Valdez, spill, oil deposited as mousse persists on rocky shores of national parks in the Gulf of Alaska, distant from the spill origin. Oil persistence is highly dependent on the stability of the boulder armors, some of which have remained intact for 20+ years. Surface oiling has declined to very low levels while subsurface oiling continues relatively unchanged at 4 of the 6 sites. Deployment of passive samplers at 2 sites revealed that some oil constituents are moving into the water. At 4 sites, the oil is only slightly weathered. Comprehensive two-dimensional gas chromatographic (GC x GC) analyses have significantly increased the discrimination of oil compounds; especially pertinent is enhanced resolution of biomarkers, useful for the identification of oil source. Thin-layer chromatography-flame ionization detection analyses indicate no significant accumulation of recalcitrant oxygenated hydrocarbons at 4 of the sites, consistent with only minor oil weathering.

Contact information for the researchers:
Gail Irvine, +1 (907) 268-7606, gvirvine@gmail.com 

Chris Reddy, +1 (858) 414-6787, creddy@whoi.edu

AGU Contact:

Mary Catherine Adams
+1 (202) 412-0889
mcadams@agu.org

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

Further reports about: Alaska Exxon Valdez Oil Spills Geological Gulf Ocean Oceanographic Oceanography analyses compounds

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>