Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

State of Himalayan glaciers less alarming than feared

20.04.2012
Several hundreds of millions of people in Southeast Asia depend, to varying degrees, on the freshwater reservoirs of the Himalayan glaciers.
Consequently, it is important to detect the potential impact of climate changes on the Himalayan glaciers at an early stage. Together with international researchers, glaciologists from the University of Zurich now reveal that the glaciers in the Himalayas are declining less rapidly than was previously thought. However, the scientists see major hazard potential from outbursts of glacial lakes.

Ever since the false prognoses of the Intergovernmental Panel on Climate Change (IPCC), the Himalayan glaciers have been a focus of public and scientific debate. The gaps in our knowledge of glaciers in the Himalayan region have hindered accurate statements and prognoses. An international team of researchers headed by glaciologists from the University of Zurich and with the involvement of scientists from Geneva now outlines the current state of knowledge of glaciers in the Himalayas in a study published in Science. The scientists confirm that the shrinkage scenarios for Himalayan glaciers published in the last IPCC report were exaggerated.
Glacier area 20 percent smaller than assumed
The most up-to-date mappings so far based on satellite data revealed that glaciers in the Himalayas and Karakoram cover a total area of approximately 40,800 km². While this is around twenty times larger than all glaciers of the European Alps put together, it is as much as twenty percent smaller than was previously assumed. Lead scientist Tobias Bolch, who researches at the University of Zurich and Dresden University of Technology, mainly puts this down to erroneous mappings in earlier studies.
Less shrinkage than predicted
The scientists took all the existing measurements of length, area and volume changes and mass budgets into account for their study. While some of the measurement series on length changes date back to 1840, measurements of glacier mass budget that instantaneously reflect the climate signal are rare. In addition, continuous measurement series do not stretch back any further than ten years. The researchers recorded average length decreases of 15 to 20 metres and area decreases of 0.1 to 0.6 percent per year in recent decades. Furthermore, the glacier surfaces lowered by around 40 centimetres a year. “The detected length changes and area and volume losses correspond to the global average,” explains Bolch, summarizing the new results. “The majority of the Himalayan glaciers are shrinking, but much less rapidly than predicted earlier.”

Aerial view of the Imja glacier and Lake Imja, Nepal, the Himalayas. The lake appeared in the 1960s and has grown continuously ever since. The sinking of the surface of the debris-covered glacier tongue is also clearly discernible. Picture: J. Kargel, University of Arizona.


The large glacial lake Imja Thso in the Imja Valley south of Mt. Everest/Nepal formed in the 1960s and has grown continuously ever since. 3D view generated from an ASTER satellite image. Picture: T. Bolch, Universität Zürich/TU Dresden

For the regions in the northwestern Himalayas and especially in the Karakoram Range, the researchers noted very heterogeneous behaviour in the glaciers. Many of them are dynamically unstable and prone to rapid advances (so called “surges”) that largely occur independently of the climatic conditions. For the last decade on average, even a slight volume increase was detected. Based on their analyses, the researchers assume that glacier shrinkage will not have a major impact on the water drainage of large rivers like the Indus, Ganges and Brahmaputra in the coming decades.

Greater variability and menacing flooding of glacial lakes
Despite the partial all-clear for the Himalayan glaciers, however, Bolch advises caution: “Due to the expected shrinkage of the glaciers, in the medium term we can expect a greater variability in the seasonal water drainage. Individual valleys could dry up seasonally.”

Bolch and his colleagues also see a very serious threat to the local population in newly formed or rapidly growing glacial lakes. The deluge of water and debris from potential outbursts of these lakes could have devastating consequences for low-lying regions. According to the scientists, increased efforts are urgently needed to monitor the lakes as well as changes in the glaciers and the climate in the Himalayas.

The study was conducted as part of the EU project High Noon and the European Space Agency project Glaciers_cci.

Literature:
T. Bolch, A. Kulkarni, A. Kääb, C. Huggel, F. Paul, J.G. Cogley, H. Frey, J.S. Kargel, K. Fujita, M. Scheel, S. Bajracharya, M. Stoffel. The State and Fate of Himalayan Glaciers. Science. April 20, 2012. doi: 10.1126/science.1215828.
Contact:
Dr. Tobias Bolch
Department of Geography
University of Zurich
Tel.: +41 44 635 52 36
Email: tobias.bolch@geo.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>