Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stalagmites May Predict Next Big One along the New Madrid Seismic Zone

29.09.2008
Small white stalagmites lining caves in the Midwest may help scientists chronicle the history of the New Madrid Seismic Zone (NMSZ) – and even predict when the next big earthquake may strike, say researchers at the Illinois State Geological Survey and the University of Illinois at Urbana-Champaign.

While the 1811-12, magnitude 8 New Madrid earthquakes altered the course of the Mississippi River and rung church bells in major cities along the East Coast, records of the seismic zone’s previous movements are scarce.

Thick layers of sediment have buried the trace of the NMSZ and scientists must search for rare sand blows and liquefaction features, small mounds of liquefied sand that squirt to the surface through fractures during earthquakes, to record past events. That’s where the stalagmites come in.

The sand blows are few and far between, said Keith Hackley, an isotope geochemist with the Illinois State Geological Survey. In contrast, caves throughout the region are lined with abundant stalagmites, which could provide a better record of past quakes. “We’re trying to see if the initiation of these stalagmites might be fault-induced, recording very large earthquakes that have occurred along the NMSZ,” he said.

Hackley and co-workers used U-Th dating techniques to determine the age of stalagmites from Illinois Caverns and Fogelpole Cave in southwestern Illinois. They discovered that some of the young stalagmites began to form at the time of the 1811-12 earthquakes.

Hackley is scheduled to present preliminary results of the study in a poster on Sunday, 5 October, at the 2008 Joint Meeting of the Geological Society of America (GSA), Soil Science Society of America (SSSA), American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Gulf Coast Association of Geological Societies (GCAGS), in Houston, Texas, USA.

Water slowly trickles through crevices in the ceiling of a cave and drips onto the floor. Each calcium carbonate-loaded drip falls on the last, and a stalagmite slowly grows from the bottom up. Time is typically recorded in alternating light and dark layers – each pair represents a year.

When a large earthquake shakes the ground, old cracks may seal and new ones open. As a result, some groundwater seeping through the cave ceiling traces a new pattern of drips – and, eventually, stalagmites – on the cave floor. Thus it is possible that each new generation of stalagmites records the latest earthquake.

The scientists use fine drills, much like those used by dentists, to burrow into the stalagmites to collect material for dating. In addition to the 1811-12 earthquakes, their investigation has recorded seven historic earthquakes dating as far back as almost 18,000 years before the present. Understanding the NMSZ’s past, including whether quakes recur with any regularity, will help the scientists predict the potential timing of future quakes.

In coming months, Hackley and his colleagues plan to expand the study, collecting stalagmites from caves across Indiana, Missouri and Kentucky. They hope that the new data will help to fill in more of the missing history of the NMSZ.

**WHEN & WHERE**
Sunday, 5 October, 8:00 AM – 4:45 PM (authors scheduled from 3:00-4:45 PM)
George R. Brown Convention Center: Exhibit Hall E (poster, booth 136).
View abstract, paper 147-8, at “Paleo-Seismic Activity from the New Madrid Seismic Zone Recorded in Stalagmites. A New Tool for Paleo-Seismic History”
**CONTACT INFORMATION**
For on-site assistance during the 2008 Joint Annual Meeting, 5-9 October, contact Christa Stratton or Sara Uttech in the Newsroom, George R. Brown Convention Center, Room 350B, +1-713-853-8329.
After the meeting, contact:
Keith Hackley
Isotope Geochemistry, Illinois State Geological Survey
+1-217-244-2396
hackley@isgs.uiuc.edu

Christa Stratton | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>