Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring Flooding Could Swell North Dakota Lake by 50 Square Miles

14.02.2011
The cost of flood control in the Devils Lake region has surpassed $1 billion, but the worst could be yet to come this spring if forecast predictions of rises in the lake’s level prove accurate, cautions Paul Todhunter, University of North Dakota professor of geography.

“We’re at a point in the lake level’s rise where the rate of change is dramatic,” he explains. “As bad as things have been, we’re transitioning into a period where there will be greater expansion of the lake’s area for each foot of rise in its level.”

Located in northeastern North Dakota next to the city of Devils Lake, the lake’s level has risen more than 29 feet since a regional wet cycle began in 1993, causing millions of dollars in damage by inundating communities, farms, homes and recreation facilities. Eighteen years ago, Devils Lake covered approximately 70 square miles. During that period, the average increase of area covered was less than 11 square miles per year.

However, Todhunter says the forecast three-foot rise in Devils Lake caused by runoff from heavy snow in the area this winter could increase the lake’s size by more than 50 square miles in a single year.

Comparing the glacially formed Devils Lake Basin’s shape to a bowl, Todhunter explains, “We’ve been filling the deeper part of the bowl. Now we’re moving from that area to the flatter areas. Instead of a bowl-shaped area, we’re filling a platter-shaped area. It’s a more gradual depression that causes the water to spread out more.”

Todhunter warns that Devils Lake has reached a point at which any additional increase in its level will likely result in an exponential increase in the area it covers. He refers to a graph based on U.S. Geological Survey data showing the amount of acreage Devils Lake covers in relation to its elevation above sea level.

From its lowest recorded level of 1,402 feet in 1940 to its current level of near 1,452 feet, the area covered by water is represented by a gradually rising curve. But past the current level, the line’s slope increases sharply, indicating that every increase in the lake’s level will cause it to spread out more.

Todhunter studies natural hazards related to climatology and hydrology. He’s been interested in Devils Lake since it began to rise in 1993, and has conducted research, presented papers and taught courses on the subject. He says Devils Lake in northeastern North Dakota is unusual because it’s a terminal lake, a unique flood hazard in the United States.

Terminal lakes exist in closed drainage basins. While water from rain and melting snow can flow into them, there is normally no natural outlet for water to escape. Like a bathtub that eventually runs over when the water is left running, Devils Lake will naturally overflow into the Red River Drainage Basin when it reaches 1,458 feet above sea level. This has not occurred in recorded history, although there is evidence that it has happened at least twice in the last 10,000 years.

“The basic fact of terminal lakes is that water can only be removed from them by evaporation, which varies relatively little from one year to the next – especially in North Dakota where summers are short,” Todhunter says. ”When the water level goes up sharply, it can only be brought down slowly.”

The geologic record of Devils Lake shows that it has never remained at a stable level; it is either rising or falling. During the 1980s and early 90s, falling lake levels were the greatest concern to area residents.

“The wet cycle we have been in not only adds water directly onto Devils Lake by precipitation, but it also increases surface runoff into the lake from streams feeding into it,” Todhunter says. ”This surface inflow is the largest source of water input to the lake and is highly variable from year to year.

“Some years, little or no surface runoff occurs, while the water is now gushing into the lake,” he continues. “This means that without artificial removal such as an outlet, it will be some time before the lake levels drop to a less threatening level.”

Although the state of North Dakota has operated an outlet on the west end of Devils Lake since 2005, it has not significantly reduced the lake’s level. Plans are being made to increase its capacity and add another outlet on the lake’s east end. The goal is to prevent an uncontrolled release of water from Devils Lake that would not only cause flooding along the Sheyenne and Red Rivers, but also cause water quality problems.

“They’ve moved a lot more aggressively in the last couple years because the forecast that people said wouldn’t occur is looking a lot more probable,” Todhunter says.

Useful links

UND Department of Geography
http://arts-sciences.und.edu/geography/
Discovery magazine article: “Mapping the Monster”
http://webapp.und.edu/dept/our/discovery/mapping-the-monster
North Dakota State Water Commission flood information on Devils Lake
http://www.swc.nd.gov/4dlink9/4dcgi/GetCategoryRecord/Devils%20Lake%20Flooding
U.S. Geological Survey Devils Lake Basin
http://nd.water.usgs.gov/devilslake
August 2010 report of the Devils Lake Basin Technical Review Team
http://www.nd.gov/des/uploads/resources/656/2010-report-of-the-devils-lake-basin-trt-ver-2.1.pdf

Contacts

Paul Todhunter, professor
UND Department of Geography
701-777-4593
paul.todhunter@und.edu
Patrick Miller, writer/editor
UND Office of University Relations
701-777-5529
patrick.miller@und.edu

Patrick Miller | Newswise Science News
Further information:
http://www.und.edu

Further reports about: Devils Hole pupfish Flooding Lake Baikal River Square Swell

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>