Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What sponges, beards and the lung have in common

Max Planck mathematicians and their colleagues in Poland developed a novel criterion for the calculation of mass and energy transport in porous systems

Porous media are ubiquitous.

The sponge in the kitchen, the lung tissue, the human skin, all of them are porous. They are full of holes like a Swiss cheese and they have remarkable properties due to their structure.

Mathematicians from the Max Planck Institute for Marine Microbiology in Bremen and their colleagues from the University of Wroclaw in Poland took a close look at the characteristics of perforated matter and defined a novel criterion for the homogeneity of these systems. According to their findings a large number of old model calculations published so far do not meet this standard and are inaccurate.

Not only pure academic curiosity is the reason that scientists are interested in the mathematics of these strange materials. In nature porous surfaces are involved in the decomposition of chemical compounds and natural products. Marine aggregates in the oceans take part in the release of carbon dioxide. Today's modern industry is seeking for new technology in hydrology, oil and gas production, in textile engineering and many more applications. The calculations of heat and mass transfer through porous systems are still a challenge in process engineering. How fluids and gases flow through complex channels is a demanding task for science and engineering. The systems under consideration may be very large like the continental shelf from which almost half is made of permeable sands.

Prof. Dr. Arzhang Khalili from the Max Planck Institute for Marine Microbiology in Bremen poses the crucial question:" What is the minimum size of the model system in order to be able to predict the behavior of the particles in the real world?" The underlying basic assumption is that the porous material has to be homogeneous. Large model systems demand high computational power and therefore the systems were kept as small as possible. With many intensive numerical calculations Arzhang Khalili and his polish colleagues Zbigniew Koza and Maciej Matyka proved that most model systems published in the scientific literature were too small. " The size of the model system must be at least 100 times larger than the mean grain size. We checked old publications dating back 17 years and found that the majority of them did not fulfill this standard. According to our study almost all of them have to be recalculated", states Professor Khalili.

Manfred Schlösser

For more information please contact
Prof. Dr. Arzhang Khalili
+49 421 2028636
or the press officers
Dr. Manfred Schloesser +49 421 2028704
Dr. Susanne Borgwardt +49 421 2028704
Original publication
Koza, Z. Matyka, M, & Khalili, A. (2009): Finite-size anisotropy in statistically uniform porous media. Phys. Rev. E. 79. 066306-1 - 066306-7.

Dr. Manfred Schloesser | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>