Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What sponges, beards and the lung have in common

21.08.2009
Max Planck mathematicians and their colleagues in Poland developed a novel criterion for the calculation of mass and energy transport in porous systems

Porous media are ubiquitous.

The sponge in the kitchen, the lung tissue, the human skin, all of them are porous. They are full of holes like a Swiss cheese and they have remarkable properties due to their structure.

Mathematicians from the Max Planck Institute for Marine Microbiology in Bremen and their colleagues from the University of Wroclaw in Poland took a close look at the characteristics of perforated matter and defined a novel criterion for the homogeneity of these systems. According to their findings a large number of old model calculations published so far do not meet this standard and are inaccurate.

Not only pure academic curiosity is the reason that scientists are interested in the mathematics of these strange materials. In nature porous surfaces are involved in the decomposition of chemical compounds and natural products. Marine aggregates in the oceans take part in the release of carbon dioxide. Today's modern industry is seeking for new technology in hydrology, oil and gas production, in textile engineering and many more applications. The calculations of heat and mass transfer through porous systems are still a challenge in process engineering. How fluids and gases flow through complex channels is a demanding task for science and engineering. The systems under consideration may be very large like the continental shelf from which almost half is made of permeable sands.

Prof. Dr. Arzhang Khalili from the Max Planck Institute for Marine Microbiology in Bremen poses the crucial question:" What is the minimum size of the model system in order to be able to predict the behavior of the particles in the real world?" The underlying basic assumption is that the porous material has to be homogeneous. Large model systems demand high computational power and therefore the systems were kept as small as possible. With many intensive numerical calculations Arzhang Khalili and his polish colleagues Zbigniew Koza and Maciej Matyka proved that most model systems published in the scientific literature were too small. " The size of the model system must be at least 100 times larger than the mean grain size. We checked old publications dating back 17 years and found that the majority of them did not fulfill this standard. According to our study almost all of them have to be recalculated", states Professor Khalili.

Manfred Schlösser

For more information please contact
Prof. Dr. Arzhang Khalili
+49 421 2028636
E-Mail akhalili@mpi-bremen.de
or the press officers
Dr. Manfred Schloesser +49 421 2028704 mschloes@mpi-bremen.de
Dr. Susanne Borgwardt +49 421 2028704 sborgwar@mpi-bremen.de
Original publication
Koza, Z. Matyka, M, & Khalili, A. (2009): Finite-size anisotropy in statistically uniform porous media. Phys. Rev. E. 79. 066306-1 - 066306-7.

Dr. Manfred Schloesser | idw
Further information:
http://www.mpi-bremen.de

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>