Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spanish mathematicians put forward a model for studying submarine avalanches and tsunamis

A team of Andalucian and French scientists has put forward a mathematical model that enables submarine avalanches and certain types of tsunamis to be studied using equations, according to a recent article in the Journal of Computational Physics. Mathematicians are already applying the model to analyse landslides on the island of Alborón (Almería).

“The model we have developed can be used to predict tsunamis that form following the sudden fall of sediments near the coast”, Enrique D. Fernández Nieto explains, who is one of the authors of the study and is from the Department of Applied Mathematics from the University of Seville. Rock-fall can be favoured by the existence of an abrupt slope at the bottom of the rock-fall, by an accumulation of material, or by a strong surge that destabilises the layer of sediments and causes it to fall.

The study, which has appeared in the Journal of Computational Physics, uses equations known as “Savage-Hutter equations” named after the two scientists who proposed these in order to study rock avalanches. “However, for the first time we are addressing the need to take into account the coupling between the two layers implicated in the processes of submarine avalanches: water and rocks”. This is how Fernández describes it and also considers that studying this two-layer coupling “is complicated, but fundamental to the total dynamic, because rock movements cause the water to move, and possibly the tides of water that can displace granular material”.

Like columns of water and sand

In order to derive the model, the mathematicians took into account the porosity of the sediments, the forces that interact in the process and the “Coulomb friction term”, which refers to the parameters of the equation that are opposed to the movement of the mass of rock when it falls.

In order to understand this concept, Fernández cites the example of a column of water in a container, the door of which is opened: the liquid spills out and is directed towards a horizontal, constant and still surface. However, when the same experiment is performed with a column of sand grains, the final state has the shape of a bell. The terms that produce this resulting slope, which is no longer horizontal, due to the friction between the particles, is what is referred to as the “Coulomb friction term”.

In addition to the internal friction angles and at the bottom, the mathematicians evaluate other parameters such as the flotability of the submerged material, the topography of the land, the initial direction of the water and its height. Once all these data have been obtained, the mathematicians introduce these into a computer programme and by using animations analyse and visualise the evolution of the submarine avalanches and tsunamis.

The researchers have established the effectiveness of their equations using data from a very well documented tsunami that occurred in Papua New Guinea in 1998. In partnership with geologists from the Spanish Institute of Oceanography (IEO) and by means of a joint project financed by the Junta de Andalucia, the researchers are studying the period during which certain landslides occurred in the past in the vicinity of the Island of Alborán (Almería), and are also evaluating the likelihood of their recurring in the future in the Alborán marine basin.

Scientists from the University of Seville, the University of Malaga, the Escuela Normal Superior in Paris, the University of Savoie, also in France, and from the Seismology Team from the Institute of Physics from the Globe of Paris have all participated in the study.

SINC Team | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>