Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish mathematicians put forward a model for studying submarine avalanches and tsunamis

17.10.2008
A team of Andalucian and French scientists has put forward a mathematical model that enables submarine avalanches and certain types of tsunamis to be studied using equations, according to a recent article in the Journal of Computational Physics. Mathematicians are already applying the model to analyse landslides on the island of Alborón (Almería).

“The model we have developed can be used to predict tsunamis that form following the sudden fall of sediments near the coast”, Enrique D. Fernández Nieto explains, who is one of the authors of the study and is from the Department of Applied Mathematics from the University of Seville. Rock-fall can be favoured by the existence of an abrupt slope at the bottom of the rock-fall, by an accumulation of material, or by a strong surge that destabilises the layer of sediments and causes it to fall.

The study, which has appeared in the Journal of Computational Physics, uses equations known as “Savage-Hutter equations” named after the two scientists who proposed these in order to study rock avalanches. “However, for the first time we are addressing the need to take into account the coupling between the two layers implicated in the processes of submarine avalanches: water and rocks”. This is how Fernández describes it and also considers that studying this two-layer coupling “is complicated, but fundamental to the total dynamic, because rock movements cause the water to move, and possibly the tides of water that can displace granular material”.

Like columns of water and sand

In order to derive the model, the mathematicians took into account the porosity of the sediments, the forces that interact in the process and the “Coulomb friction term”, which refers to the parameters of the equation that are opposed to the movement of the mass of rock when it falls.

In order to understand this concept, Fernández cites the example of a column of water in a container, the door of which is opened: the liquid spills out and is directed towards a horizontal, constant and still surface. However, when the same experiment is performed with a column of sand grains, the final state has the shape of a bell. The terms that produce this resulting slope, which is no longer horizontal, due to the friction between the particles, is what is referred to as the “Coulomb friction term”.

In addition to the internal friction angles and at the bottom, the mathematicians evaluate other parameters such as the flotability of the submerged material, the topography of the land, the initial direction of the water and its height. Once all these data have been obtained, the mathematicians introduce these into a computer programme and by using animations analyse and visualise the evolution of the submarine avalanches and tsunamis.

The researchers have established the effectiveness of their equations using data from a very well documented tsunami that occurred in Papua New Guinea in 1998. In partnership with geologists from the Spanish Institute of Oceanography (IEO) and by means of a joint project financed by the Junta de Andalucia, the researchers are studying the period during which certain landslides occurred in the past in the vicinity of the Island of Alborán (Almería), and are also evaluating the likelihood of their recurring in the future in the Alborán marine basin.

Scientists from the University of Seville, the University of Malaga, the Escuela Normal Superior in Paris, the University of Savoie, also in France, and from the Seismology Team from the Institute of Physics from the Globe of Paris have all participated in the study.

SINC Team | alfa
Further information:
http://www.plataformasinc.es
http://www.damflow.org
http://anamat.cie.uma.es/animaciones

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>