Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spain’s biggest meteorite strike remembered 150 years on

02.01.2009
Early on Christmas Eve, 1858 “people who in the streets, on pathways and in the fields saw a magnificent ball of fire appear, which shone with a brilliant, blinding light and all the colours of the rainbow, obscured the light of the moon and descended majestically from the sky”.

This comes from a report commissioned by Rafael Martínez Fortún, from the town of Molina de Segura in Murcia, whose farm was struck by the largest meteorite recovered to date in Spain. In 1863, Queen Isabel II accepted it as a donation to the National Museum of Natural Sciences, where it has been conserved and exhibited ever since.

The Martínez Fortún account forms part of a recent study published in the magazine Astronomy and Geophysics by scientists Jesús Martínez Frías, planetary geologist at the Centre for Astrobiology (INTA/CSIC), and Rosario Lunar, chair in Crystallography and Mineralogy at the Complutense University of Madrid. Martínez Frías tells SINC the Molina de Segura meteorite “weighed around 144 kilos at the time it fell, but it was divided into various parts, and the largest, weighing 112.5 kilos, is the one currently on display at the National Museum of Natural Sciences (MNCN) in Madrid”.

The authors say this was an ordinary chondrite, “a very primitive rocky meteorite made out of small spherical particles, known as chondrules, which resulted from the solidification of dust and gas in the primigenious solar nebula, which gave birth to the Solar System and our own planet”. Chondrites, which make up more than 85% of all known meteorites, are divided into various types depending on their mineralogy, texture and geochemistry. The Molina de Segura one is a type H5 meteorite because of its high iron content and because it belongs to petrological type “5” (a number indicating the degree of alteration experienced in the “parent asteroid”).

Aside from the mineralogical and geochemical features of the Molina de Segura meteorite, the study also includes much of the report commissioned by Rafael Martínez Fortún. The owner of the barley plot where the extraterrestrial rock fell commissioned and legally registered the “literal testimony of the information ad infinitum in order to a confirm the physical phenomena observed when an aerolite fell to Earth in the early hours of December 24, 1858”. This document and others, seen by SINC, detailing the circumstances around the event, have seen the light of day thanks to the work of experts in the MNCN archive.

They thought it would hit the spire of the cathedral

One of the witnesses relates that “at a quarter past two in the morning” the atmosphere was suddenly illuminated by “a huge star of a brightness that eclipsed the moon, and that moved from overhead towards the north”. Another witness said he saw “a globe of the most brilliant fire and beautiful colours, which seemed as though one of the stars was falling to Earth from the sky”. “It passed over this city so low over the tower of the cathedral that they thought it would brush its lantern, but that didn’t happen. Instead it carried on for another three leagues, saving the city and its surrounding districts”, continues the report commissioned by Martínez Fortún, in whose farm the meteorite landed.

The meteorite’s impact caused such a tremor that it awoke the residents of Molina de Segura, a town in the lowlands of Murcia that is today home to around 65,000 inhabitants. “Many people who had been asleep were awoken and all of them, except those who had seen the phenomenon outside, believed it was one of the storms that are so common in the area, and were filled with fear,” continues the report. Many of those making statements said they had heard a loud noise “like canon fire”, accompanied by a shuddering of the earth “like that caused by an earthquake”.

Some people who were curious went to the site of the impact a few days later “and they were all confused, without knowing what could have caused it”. After moving the soil a little, and finding nothing, they “completely forgot” the event. Later, “during the barley harvest”, one of the workers noticed a hole caused by the meteorite “and upon digging around with his sickle hit something hard, and he told his fellow workers”, whose curiosity led them the dig deeper into the earth to see what they could find.

“They found a four-sided stone of a blackish colour and a weight that was extraordinary in comparison to its volume, because it weighed ten arrobas (old Spanish unit of weight = 25.36 pounds) and 15 pounds. This, together with the fact that it did not look anything like any stone any of them had ever seen before in that area or anywhere else, impressed them greatly, and one of them chipped off a piece by striking it with an iron hammer”, the report relates.

The place where the meteorite fell to earth, “located in the Partido de la Ornera”, is today known as the “Surroundings of the Rellano de Molina de Segura”, and has been declared a “site of geological interest” in the Murcia region. The local city council has suggested carrying out a detailed study of the impact zone, with the help of the scientists, to see whether any new information or fragments come to light.

Queen agrees to accept donation of the meteorite

When Rafael Martínez Fortún found out that an “aerolite” had fallen on his land, he decided to “send it to one of the scientific museums of the Kingdom so that it can be made available to men of science, who can study it with due attention”. With this in mind, he gathered the testimony of the witnesses and included these along with other information in a report that he registered before a judge in Murcia.

Queen Isabel II accepted the donation of the meteorite for the collection of the National Museum of Natural Sciences, at that time directed by Mariano de la Paz Graells, according to the documentation from the museum’s own archives. Scientists at the time studied the meteorite and extracted some fragments in order to analyse them.

As the years went by, some more small pieces of the Molina de Segura meteorite were sent to various collections and institutions around the world, such as the Natural History Museum in the United Kingdom, the Field Museum in Chicago, United States, and the Vatican’s meteorite collection.

The scientific publication by Martínez Frías and Rosario Lunar includes this information, and the authors have also proposed that the International Meteoritical Bulletin, considered the official data base of all the world’s meteorites, change its name from “Molina meteorite”, under which it has been registered, to “Molina de Segura meteorite”. They feel this is more precise, since meteorites bear the name of the place where they fall or are found (or if this is not possible, the nearest place), and Molina’s name was changed to Molina de Segura in 1916, following a proposal by the Royal Geographic Society.

The Murcian city where the largest meteorite found in Spain fell to Earth recently organised a scientific conference to commemorate the 150th anniversary of the event, which included a seminar-workshop given by María Paz Martín, a technical expert at the National Institute of Aerospace Technology (INTA), and a talk on meteorites given by Martínez Frías. The researcher stresses the importance of these types of rock “because they are unique materials that allow us to understand more about the primigenous material of the Solar System, and also to explore other planetary bodies (such as Mars or the Moon, thanks to the meteorites that originate from them) and to evaluate the consequences of large impacts during the geo-biological evolution of the Earth”.

In 1858, the same year as the Molina de Segura meteorite fell, the German chemist Friedrich Wöhler discovered that some meteorites transport organic material and suggested, for the first time, that these extraterrestrial rocks could be carriers of life.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>