Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space-based methane maps find largest US signal in Southwest

10.10.2014

An unexpectedly high amount of the climate-changing gas methane, the main component of natural gas, is escaping from the Four Corners region in the U.S. Southwest, according to a new study by the University of Michigan and NASA.

The researchers mapped satellite data to uncover the nation's largest methane signal seen from space. They measured levels of the gas emitted from all sources, and found more than half a teragram per year coming from the area where Arizona, New Mexico, Colorado and Utah meet. That's about as much methane as the entire coal, oil, and gas industries of the United Kingdom give off each year.

Four Corners sits on North America's most productive coalbed methane basin. Coalbed methane is a variety of the gas that's stuck to the surface of coal. It is dangerous to miners (not to mention canaries), but in recent decades, it's been tapped as a resource.

"There's so much coalbed methane in the Four Corners area, it doesn't need to be that crazy of a leak rate to produce the emissions that we see. A lot of the infrastructure is likely contributing," said Eric Kort, assistant professor of atmospheric, oceanic and space sciences at the U-M College of Engineering.

Kort, first author of a paper on the findings published in Geophysical Research Letters, says the controversial natural gas extraction technique of hydraulic fracturing is not the main culprit.

"We see this large signal and it's persistent since 2003," Kort said. "That's a pre- fracking timeframe in this region. While fracking has become a focal point in conversations about methane emissions, it certainly appears from this and other studies that in the U.S., fossil fuel extraction activities across the board likely emit higher than inventory estimates."

While the signal represents the highest concentration of methane seen from space, the researchers caution that Four Corners isn't necessarily the highest emitting region.

"One has to be somewhat careful in equating abundances with emissions," said study contributor Christian Frankenberg at Jet Propulsion Laboratory. "The Four Corners methane source is in a relatively isolated area with little other methane emissions, hence causing a well distinguishable hot-spot in methane abundances. Local or more diffuse emissions in other areas, such as the eastern U.S., may be convoluted with other nearby sources."

Natural gas is often touted as more sustainable than coal and oil because it releases fewer pollutants when it burns. But when it leaks into the air before it gets to the pilot light, methane has 30 times the short-term heat-trapping effects of carbon dioxide. Policymakers, energy companies and environmentalists alike are aiming to reduce methane emissions as a way to curb climate change. But pinpointing plumes—a first step to stopping them—has been a difficult task with today's tools.

The research team demonstrated a new approach to finding leaks. They used a satellite instrument—the European Space Agency's SCIAMACHY—to get regional methane measurements over the entire United States. They ran the data through a mathematical model to account for mountains and valleys, which can trap methane. That's how they identified the anomaly at Four Corners. Then they zoomed in on that region and ran another mathematical model to control for wind, to make sure that didn't negate the original signal. It didn't.

"We didn't know this was a region we should look at. We found it from space," Kort said. "We've demonstrated that satellite measurements can help identify, locate and quantify anomalous methane emissions in regions that are unexpected."

Methane gets into the atmosphere from both natural and human-made sources. Wetlands and landfills release it, as do certain bacteria. Agriculture is a big contributor. So are gas and oil drilling and distribution. Inventories such as those the EPA compiles make estimates based on measurements from a sampling of these sources. In previous work, air measurements from planes and a sparse network of monitoring towers have revealed that the inventory-based numbers are coming in low—roughly 50 percent low. But towers and planes can't see everywhere to figure out exactly where all the methane is coming from. With limited observations there can be blind spots, the researchers say.

This study used satellite data from 2003 to 2009. In later years, they were able to validate the satellite measurements with a year of ground-based data.

SCIAMACHY is no longer operating, so there aren't equivalent satellites to provide this information for other parts of the world. For the Four Corners region, Kort will be taking readings from an airplane next year, to get even closer to identifying the leaks.

###

The study is titled "Four Corners: the largest US methane anomaly viewed from space." The research was funded by NASA and Los Alamos National Lab.

Eric Kort: http://aoss.engin.umich.edu/people/eakort
Abstract: http://onlinelibrary.wiley.com/doi/10.1002/2014GL061503/abstract

Nicole Casal Moore | Eurek Alert!

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>