Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some gas produced by hydraulic fracturing comes from surprise source

15.12.2015

Microbes make methane that adds to wells' output, study finds

Some of the natural gas harvested by hydraulic fracturing operations may be of biological origin--made by microorganisms inadvertently injected into shale by oil and gas companies during the hydraulic fracturing process, a new study has found.


This is a cross-section of the hydraulic fracturing process.

Image by Michael Wilkins, courtesy of The Ohio State University

The study suggests that microorganisms including bacteria and archaea might one day be used to enhance methane production--perhaps by sustaining the energy a site can produce after fracturing ends.

The discovery is a result of the first detailed genomic analysis of bacteria and archaea living in deep fractured shales, and was made possible through a collaboration among universities and industry. The project is also yielding new techniques for tracing the movement of bacteria and methane within wells.

Researchers described the project's early results on Monday, Dec. 14, at the American Geophysical Union meeting in San Francisco.

"A lot is happening underground during the hydraulic fracturing process that we're just beginning to learn about," said principal investigator Paula Mouser, assistant professor of civil, environmental and geodetic engineering at The Ohio State University.

"The interactions of microorganisms and chemicals introduced into the wells create a fascinating new ecosystem. Some of what we learn could make the wells more productive."

Oil and gas companies inject fluid--mostly water drawn from surface reservoirs--underground to break up shale and release the oil and gas--mostly methane--that is trapped inside. Though they've long known about the microbes living inside fracturing wells--and even inject biocides to keep them from clogging the equipment--nobody has known for sure where the bacteria came from until now.

"Our results indicate that most of the organisms are coming from the input fluid," said Kelly Wrighton, assistant professor of microbiology and biophysics at Ohio State. "So this means that we're creating a whole new ecosystem a mile below the surface. Not only are we fracturing the rock, we're giving these organisms a new place to live and food to eat. And in fact, the biocides that we add to inhibit their growth may actually be fueling the production of methane."

That is, the biocides kill some types of bacteria, thus enabling other bacteria and archaea to prosper--species that somehow find a way to survive in water that is typically four times saltier than the ocean, and under pressures that are typically hundreds of times higher than on the surface of the earth. Deprived of light for photosynthesis, these hardy microorganisms adapt in part by eating chemicals found in the fracturing fluid and producing methane.

Next, the researchers want to pinpoint exactly how the bacteria enter the fracturing fluid. It's likely that they normally live in the surface water that makes up the bulk of the fluid. But there's at least one other possibility, Wrighton explained.

Oil and gas companies start the fracturing process by putting fresh water into giant blenders, where chemicals are added. The blenders are routinely swapped between sites, and sometimes companies re-use some of the well's production fluid. So it's possible that the bacteria live inside the equipment and propagate from well to well. In the next phase of the study, the team will sample site equipment to find out.

The clues emerged when the researchers began using genomic tools to construct a kind of metabolic blueprint for life living inside wells, Wrighton explained.

"We look at the fluid that comes out of the well," she said. "We take all the genes and enzymes in that fluid and create a picture of what the whole microbial community is doing. We can see whether they survive, what they eat and how they interact with each other."

The Ohio State researchers are working with partners at West Virginia University to test the fluids taken from a well operated by Northeast Natural Energy in West Virginia. For more than a year, they've regularly measured the genes, enzymes and chemical isotopes in used fracturing fluid drawn from the well.

Within around 80 days after injection, the researchers found, the organisms inside the well settle into a kind of food chain that Wrighton described this way: Some bacteria eat the fracturing fluid and produce new chemicals, which other bacteria eat. Those bacteria then produce other chemicals, and so on. The last metabolic step ends with certain species of archaea producing methane.

Tests also showed that initially small bacterial populations sometimes bloom into prominence underground. In one case, a particular species that made up only 4 percent of the microbial life going into the well emerged in the used fracturing fluid at levels of 60 percent.

"In terms of the resilience of life, it's new insight for me into the capabilities of microorganisms."

The researchers are working to describe the nature of pathways along which fluids migrate in shale, develop tracers to track fluid migration and biological processes, and identify habitable zones where life might thrive in the deep, hot terrestrial subsurface.

For example, Michael Wilkins, assistant professor of earth sciences and microbiology at Ohio State, leads a part of the project that grows bacteria under high pressure and high temperature conditions.

"Our aim is to understand how the microorganisms operate under such conditions, given that it's likely they've been injected from surface sources, and are accustomed to living at much lower temperatures and normal atmospheric pressure. We're also hoping to see how geochemical signatures of microbial activity, such as methane isotopes, change in these environments," Wilkins said.

Other aspects of the project involve studying how liquid, gas and rock interact underground. In Ohio State's Subsurface Materials Characterization and Analysis Laboratory, Director David Cole models the geochemical reactions taking place inside shale wells. The professor of earth sciences and Ohio Research Scholar is uncovering reaction rates for the migration of chemicals inside shale.

Using tools such as advanced electron microscopy, micro-X-ray computed tomography and neutron scattering, Cole's group studies the pores that form inside shale. The pores range in size from the diameter of a human hair to many times smaller, and early results suggest that connections between these pores may enable microorganisms to access food and room to grow.

Yet another part of the project involves developing new ways to track the methane produced by the bacteria, as well as the methane released from shale fracturing. Thomas Darrah, assistant professor of earth sciences, is developing computer models that trace the pathways fluids follow within the shale and within fracturing equipment.

Though oil and gas companies may not be able to take full advantage of this newly discovered methane source for some time, Wrighton pointed out that there are already examples of bio-assisted methane production in industry, particularly in coal bed methane operations.

"Hydraulic fracturing is a young industry," she said. "It may take decades, but it's possible that biogenesis will play a role in its future.

Other researchers on the project hail from Pacific Northwest National Laboratory and the University of Maine.

###

This research is funded by the National Science Foundation.

Contacts:

Kelly Wrighton, Wrighton.1@osu.edu

Michael Wilkins, Wilkins.231@osu.edu

David Cole, Cole.618@osu.edu

Thomas Darrah, Darrah.24@osu.edu

Paula Mouser is not attending AGU, but can be reached by email at Mouser.19@osu.edu.

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Editor's note: To reach the researchers directly during the AGU meeting, or for copies of images, contact Pam Frost Gorder at (614) 668-3585.

Media Contact

Pam Frost Gorder
Gorder.1@osu.edu
614-292-9475

 @osuresearch

http://news.osu.edu 

Pam Frost Gorder | EurekAlert!

More articles from Earth Sciences:

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

nachricht Newly discovered salty subglacial lakes could help search for life in solar system
12.04.2018 | University of Texas at Austin

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>