Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some gas produced by hydraulic fracturing comes from surprise source

15.12.2015

Microbes make methane that adds to wells' output, study finds

Some of the natural gas harvested by hydraulic fracturing operations may be of biological origin--made by microorganisms inadvertently injected into shale by oil and gas companies during the hydraulic fracturing process, a new study has found.


This is a cross-section of the hydraulic fracturing process.

Image by Michael Wilkins, courtesy of The Ohio State University

The study suggests that microorganisms including bacteria and archaea might one day be used to enhance methane production--perhaps by sustaining the energy a site can produce after fracturing ends.

The discovery is a result of the first detailed genomic analysis of bacteria and archaea living in deep fractured shales, and was made possible through a collaboration among universities and industry. The project is also yielding new techniques for tracing the movement of bacteria and methane within wells.

Researchers described the project's early results on Monday, Dec. 14, at the American Geophysical Union meeting in San Francisco.

"A lot is happening underground during the hydraulic fracturing process that we're just beginning to learn about," said principal investigator Paula Mouser, assistant professor of civil, environmental and geodetic engineering at The Ohio State University.

"The interactions of microorganisms and chemicals introduced into the wells create a fascinating new ecosystem. Some of what we learn could make the wells more productive."

Oil and gas companies inject fluid--mostly water drawn from surface reservoirs--underground to break up shale and release the oil and gas--mostly methane--that is trapped inside. Though they've long known about the microbes living inside fracturing wells--and even inject biocides to keep them from clogging the equipment--nobody has known for sure where the bacteria came from until now.

"Our results indicate that most of the organisms are coming from the input fluid," said Kelly Wrighton, assistant professor of microbiology and biophysics at Ohio State. "So this means that we're creating a whole new ecosystem a mile below the surface. Not only are we fracturing the rock, we're giving these organisms a new place to live and food to eat. And in fact, the biocides that we add to inhibit their growth may actually be fueling the production of methane."

That is, the biocides kill some types of bacteria, thus enabling other bacteria and archaea to prosper--species that somehow find a way to survive in water that is typically four times saltier than the ocean, and under pressures that are typically hundreds of times higher than on the surface of the earth. Deprived of light for photosynthesis, these hardy microorganisms adapt in part by eating chemicals found in the fracturing fluid and producing methane.

Next, the researchers want to pinpoint exactly how the bacteria enter the fracturing fluid. It's likely that they normally live in the surface water that makes up the bulk of the fluid. But there's at least one other possibility, Wrighton explained.

Oil and gas companies start the fracturing process by putting fresh water into giant blenders, where chemicals are added. The blenders are routinely swapped between sites, and sometimes companies re-use some of the well's production fluid. So it's possible that the bacteria live inside the equipment and propagate from well to well. In the next phase of the study, the team will sample site equipment to find out.

The clues emerged when the researchers began using genomic tools to construct a kind of metabolic blueprint for life living inside wells, Wrighton explained.

"We look at the fluid that comes out of the well," she said. "We take all the genes and enzymes in that fluid and create a picture of what the whole microbial community is doing. We can see whether they survive, what they eat and how they interact with each other."

The Ohio State researchers are working with partners at West Virginia University to test the fluids taken from a well operated by Northeast Natural Energy in West Virginia. For more than a year, they've regularly measured the genes, enzymes and chemical isotopes in used fracturing fluid drawn from the well.

Within around 80 days after injection, the researchers found, the organisms inside the well settle into a kind of food chain that Wrighton described this way: Some bacteria eat the fracturing fluid and produce new chemicals, which other bacteria eat. Those bacteria then produce other chemicals, and so on. The last metabolic step ends with certain species of archaea producing methane.

Tests also showed that initially small bacterial populations sometimes bloom into prominence underground. In one case, a particular species that made up only 4 percent of the microbial life going into the well emerged in the used fracturing fluid at levels of 60 percent.

"In terms of the resilience of life, it's new insight for me into the capabilities of microorganisms."

The researchers are working to describe the nature of pathways along which fluids migrate in shale, develop tracers to track fluid migration and biological processes, and identify habitable zones where life might thrive in the deep, hot terrestrial subsurface.

For example, Michael Wilkins, assistant professor of earth sciences and microbiology at Ohio State, leads a part of the project that grows bacteria under high pressure and high temperature conditions.

"Our aim is to understand how the microorganisms operate under such conditions, given that it's likely they've been injected from surface sources, and are accustomed to living at much lower temperatures and normal atmospheric pressure. We're also hoping to see how geochemical signatures of microbial activity, such as methane isotopes, change in these environments," Wilkins said.

Other aspects of the project involve studying how liquid, gas and rock interact underground. In Ohio State's Subsurface Materials Characterization and Analysis Laboratory, Director David Cole models the geochemical reactions taking place inside shale wells. The professor of earth sciences and Ohio Research Scholar is uncovering reaction rates for the migration of chemicals inside shale.

Using tools such as advanced electron microscopy, micro-X-ray computed tomography and neutron scattering, Cole's group studies the pores that form inside shale. The pores range in size from the diameter of a human hair to many times smaller, and early results suggest that connections between these pores may enable microorganisms to access food and room to grow.

Yet another part of the project involves developing new ways to track the methane produced by the bacteria, as well as the methane released from shale fracturing. Thomas Darrah, assistant professor of earth sciences, is developing computer models that trace the pathways fluids follow within the shale and within fracturing equipment.

Though oil and gas companies may not be able to take full advantage of this newly discovered methane source for some time, Wrighton pointed out that there are already examples of bio-assisted methane production in industry, particularly in coal bed methane operations.

"Hydraulic fracturing is a young industry," she said. "It may take decades, but it's possible that biogenesis will play a role in its future.

Other researchers on the project hail from Pacific Northwest National Laboratory and the University of Maine.

###

This research is funded by the National Science Foundation.

Contacts:

Kelly Wrighton, Wrighton.1@osu.edu

Michael Wilkins, Wilkins.231@osu.edu

David Cole, Cole.618@osu.edu

Thomas Darrah, Darrah.24@osu.edu

Paula Mouser is not attending AGU, but can be reached by email at Mouser.19@osu.edu.

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Editor's note: To reach the researchers directly during the AGU meeting, or for copies of images, contact Pam Frost Gorder at (614) 668-3585.

Media Contact

Pam Frost Gorder
Gorder.1@osu.edu
614-292-9475

 @osuresearch

http://news.osu.edu 

Pam Frost Gorder | EurekAlert!

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>