Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some gas produced by hydraulic fracturing comes from surprise source

15.12.2015

Microbes make methane that adds to wells' output, study finds

Some of the natural gas harvested by hydraulic fracturing operations may be of biological origin--made by microorganisms inadvertently injected into shale by oil and gas companies during the hydraulic fracturing process, a new study has found.


This is a cross-section of the hydraulic fracturing process.

Image by Michael Wilkins, courtesy of The Ohio State University

The study suggests that microorganisms including bacteria and archaea might one day be used to enhance methane production--perhaps by sustaining the energy a site can produce after fracturing ends.

The discovery is a result of the first detailed genomic analysis of bacteria and archaea living in deep fractured shales, and was made possible through a collaboration among universities and industry. The project is also yielding new techniques for tracing the movement of bacteria and methane within wells.

Researchers described the project's early results on Monday, Dec. 14, at the American Geophysical Union meeting in San Francisco.

"A lot is happening underground during the hydraulic fracturing process that we're just beginning to learn about," said principal investigator Paula Mouser, assistant professor of civil, environmental and geodetic engineering at The Ohio State University.

"The interactions of microorganisms and chemicals introduced into the wells create a fascinating new ecosystem. Some of what we learn could make the wells more productive."

Oil and gas companies inject fluid--mostly water drawn from surface reservoirs--underground to break up shale and release the oil and gas--mostly methane--that is trapped inside. Though they've long known about the microbes living inside fracturing wells--and even inject biocides to keep them from clogging the equipment--nobody has known for sure where the bacteria came from until now.

"Our results indicate that most of the organisms are coming from the input fluid," said Kelly Wrighton, assistant professor of microbiology and biophysics at Ohio State. "So this means that we're creating a whole new ecosystem a mile below the surface. Not only are we fracturing the rock, we're giving these organisms a new place to live and food to eat. And in fact, the biocides that we add to inhibit their growth may actually be fueling the production of methane."

That is, the biocides kill some types of bacteria, thus enabling other bacteria and archaea to prosper--species that somehow find a way to survive in water that is typically four times saltier than the ocean, and under pressures that are typically hundreds of times higher than on the surface of the earth. Deprived of light for photosynthesis, these hardy microorganisms adapt in part by eating chemicals found in the fracturing fluid and producing methane.

Next, the researchers want to pinpoint exactly how the bacteria enter the fracturing fluid. It's likely that they normally live in the surface water that makes up the bulk of the fluid. But there's at least one other possibility, Wrighton explained.

Oil and gas companies start the fracturing process by putting fresh water into giant blenders, where chemicals are added. The blenders are routinely swapped between sites, and sometimes companies re-use some of the well's production fluid. So it's possible that the bacteria live inside the equipment and propagate from well to well. In the next phase of the study, the team will sample site equipment to find out.

The clues emerged when the researchers began using genomic tools to construct a kind of metabolic blueprint for life living inside wells, Wrighton explained.

"We look at the fluid that comes out of the well," she said. "We take all the genes and enzymes in that fluid and create a picture of what the whole microbial community is doing. We can see whether they survive, what they eat and how they interact with each other."

The Ohio State researchers are working with partners at West Virginia University to test the fluids taken from a well operated by Northeast Natural Energy in West Virginia. For more than a year, they've regularly measured the genes, enzymes and chemical isotopes in used fracturing fluid drawn from the well.

Within around 80 days after injection, the researchers found, the organisms inside the well settle into a kind of food chain that Wrighton described this way: Some bacteria eat the fracturing fluid and produce new chemicals, which other bacteria eat. Those bacteria then produce other chemicals, and so on. The last metabolic step ends with certain species of archaea producing methane.

Tests also showed that initially small bacterial populations sometimes bloom into prominence underground. In one case, a particular species that made up only 4 percent of the microbial life going into the well emerged in the used fracturing fluid at levels of 60 percent.

"In terms of the resilience of life, it's new insight for me into the capabilities of microorganisms."

The researchers are working to describe the nature of pathways along which fluids migrate in shale, develop tracers to track fluid migration and biological processes, and identify habitable zones where life might thrive in the deep, hot terrestrial subsurface.

For example, Michael Wilkins, assistant professor of earth sciences and microbiology at Ohio State, leads a part of the project that grows bacteria under high pressure and high temperature conditions.

"Our aim is to understand how the microorganisms operate under such conditions, given that it's likely they've been injected from surface sources, and are accustomed to living at much lower temperatures and normal atmospheric pressure. We're also hoping to see how geochemical signatures of microbial activity, such as methane isotopes, change in these environments," Wilkins said.

Other aspects of the project involve studying how liquid, gas and rock interact underground. In Ohio State's Subsurface Materials Characterization and Analysis Laboratory, Director David Cole models the geochemical reactions taking place inside shale wells. The professor of earth sciences and Ohio Research Scholar is uncovering reaction rates for the migration of chemicals inside shale.

Using tools such as advanced electron microscopy, micro-X-ray computed tomography and neutron scattering, Cole's group studies the pores that form inside shale. The pores range in size from the diameter of a human hair to many times smaller, and early results suggest that connections between these pores may enable microorganisms to access food and room to grow.

Yet another part of the project involves developing new ways to track the methane produced by the bacteria, as well as the methane released from shale fracturing. Thomas Darrah, assistant professor of earth sciences, is developing computer models that trace the pathways fluids follow within the shale and within fracturing equipment.

Though oil and gas companies may not be able to take full advantage of this newly discovered methane source for some time, Wrighton pointed out that there are already examples of bio-assisted methane production in industry, particularly in coal bed methane operations.

"Hydraulic fracturing is a young industry," she said. "It may take decades, but it's possible that biogenesis will play a role in its future.

Other researchers on the project hail from Pacific Northwest National Laboratory and the University of Maine.

###

This research is funded by the National Science Foundation.

Contacts:

Kelly Wrighton, Wrighton.1@osu.edu

Michael Wilkins, Wilkins.231@osu.edu

David Cole, Cole.618@osu.edu

Thomas Darrah, Darrah.24@osu.edu

Paula Mouser is not attending AGU, but can be reached by email at Mouser.19@osu.edu.

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Editor's note: To reach the researchers directly during the AGU meeting, or for copies of images, contact Pam Frost Gorder at (614) 668-3585.

Media Contact

Pam Frost Gorder
Gorder.1@osu.edu
614-292-9475

 @osuresearch

http://news.osu.edu 

Pam Frost Gorder | EurekAlert!

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>