Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar wind particles likely source of water locked inside lunar soils

15.10.2012
The most likely source of the water locked inside soils on the moon's surface is the constant stream of charged particles from the sun known as the solar wind, a University of Michigan researcher and his colleagues have concluded.

Over the last five years, spacecraft observations and new lab measurements of Apollo lunar samples have overturned the long-held belief that the moon is bone-dry.

In 2009, NASA's Lunar Crater Observation and Sensing satellite, known as LCROSS, slammed into a permanently shadowed lunar crater and ejected a plume of material that was surprisingly rich in water ice. Water and related compounds have also been detected in the lunar regolith, the layer of fine powder and rock fragments that coats the lunar surface.

But the origin of lunar surface water has remained unclear. Is it mainly the result of impacts from water-bearing comets and other chunks of space debris, or could there be other sources? Theoretical models of lunar water stability dating to the late 1970s suggest that hydrogen ions (protons) from the solar wind can combine with oxygen on the moon's surface to form water and related compounds called hydroxyls, which consist of one atom of hydrogen and one of oxygen and are known as OH.

In an article published online Sunday in the journal Nature Geoscience, U-M's Youxue Zhang and colleagues from the University of Tennessee and the California Institute of Technology present findings that support solar-wind production of water ice on the moon.

The first author of the paper is Yang Liu of U-T. She is a U-M alumna who earned her doctorate under Zhang, who is a professor in the Department of Earth and Environmental Sciences.

In the paper, the researchers present infrared spectroscopy and mass spectrometry analyses of Apollo samples that reveal the presence of significant amounts of hydroxyl inside glasses formed in the lunar regolith by micrometeorite impacts.

When combined, the techniques of Fourier transform infrared spectroscopy and secondary ion mass spectrometry can be used to determine the chemical form of the hydrogen in a substance, as well as its abundance and its isotopic composition. Most of the infrared spectroscopy work was done at Zhang's U-M lab, and the mass spectroscopy was conducted at Caltech.

"We found that the 'water' component, the hydroxyl, in the lunar regolith is mostly from solar wind implantation of protons, which locally combined with oxygen to form hydroxyls that moved into the interior of glasses by impact melting," said Zhang, the James R. O'Neil Collegiate Professor of Geological Sciences.

"Lunar regolith is everywhere on the lunar surface, and glasses make up about half of lunar regolith. So our work shows that the 'water' component, the hydroxyl, is widespread in lunar materials, although not in the form of ice or liquid water that can easily be used in a future manned lunar base."

The findings imply that ice inside permanently shadowed polar craters on the moon, sometimes called cold traps, could contain hydrogen atoms ultimately derived from the solar wind, the researchers report.

"This also means that water likely exists on Mercury and on asteroids such as Vesta or Eros further within our solar system," Liu said. "These planetary bodies have very different environments, but all have the potential to produce water."

The regolith glasses are called agglutinates, and the study reported in Nature Geoscience is the first to identify agglutinates as a new reservoir of OH on the moon—an "unanticipated, abundant reservoir" of OH and water in the lunar regolith, according to the authors.

The researchers analyzed individual grains from Apollo 11 mare soil, Apollo 16 highland soil and Apollo 17 mare soil. The grains included agglutinates and impact glasses.

In addition to Liu and Zhang, authors of the Nature Geoscience report are Yunbin Guan, George Rossman and John Eiler of Caltech and Lawrence Taylor of U-T.

The work was funded in part by NASA cosmochemistry grants to Taylor and Zhang, by support from the Moore Foundation to the Caltech Microanalysis Center, and by a National Science Foundation grant to Rossman. A portion of the study was also supported by U-T's the Planetary Geosciences Institute .

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>