Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar wind particles likely source of water locked inside lunar soils

15.10.2012
The most likely source of the water locked inside soils on the moon's surface is the constant stream of charged particles from the sun known as the solar wind, a University of Michigan researcher and his colleagues have concluded.

Over the last five years, spacecraft observations and new lab measurements of Apollo lunar samples have overturned the long-held belief that the moon is bone-dry.

In 2009, NASA's Lunar Crater Observation and Sensing satellite, known as LCROSS, slammed into a permanently shadowed lunar crater and ejected a plume of material that was surprisingly rich in water ice. Water and related compounds have also been detected in the lunar regolith, the layer of fine powder and rock fragments that coats the lunar surface.

But the origin of lunar surface water has remained unclear. Is it mainly the result of impacts from water-bearing comets and other chunks of space debris, or could there be other sources? Theoretical models of lunar water stability dating to the late 1970s suggest that hydrogen ions (protons) from the solar wind can combine with oxygen on the moon's surface to form water and related compounds called hydroxyls, which consist of one atom of hydrogen and one of oxygen and are known as OH.

In an article published online Sunday in the journal Nature Geoscience, U-M's Youxue Zhang and colleagues from the University of Tennessee and the California Institute of Technology present findings that support solar-wind production of water ice on the moon.

The first author of the paper is Yang Liu of U-T. She is a U-M alumna who earned her doctorate under Zhang, who is a professor in the Department of Earth and Environmental Sciences.

In the paper, the researchers present infrared spectroscopy and mass spectrometry analyses of Apollo samples that reveal the presence of significant amounts of hydroxyl inside glasses formed in the lunar regolith by micrometeorite impacts.

When combined, the techniques of Fourier transform infrared spectroscopy and secondary ion mass spectrometry can be used to determine the chemical form of the hydrogen in a substance, as well as its abundance and its isotopic composition. Most of the infrared spectroscopy work was done at Zhang's U-M lab, and the mass spectroscopy was conducted at Caltech.

"We found that the 'water' component, the hydroxyl, in the lunar regolith is mostly from solar wind implantation of protons, which locally combined with oxygen to form hydroxyls that moved into the interior of glasses by impact melting," said Zhang, the James R. O'Neil Collegiate Professor of Geological Sciences.

"Lunar regolith is everywhere on the lunar surface, and glasses make up about half of lunar regolith. So our work shows that the 'water' component, the hydroxyl, is widespread in lunar materials, although not in the form of ice or liquid water that can easily be used in a future manned lunar base."

The findings imply that ice inside permanently shadowed polar craters on the moon, sometimes called cold traps, could contain hydrogen atoms ultimately derived from the solar wind, the researchers report.

"This also means that water likely exists on Mercury and on asteroids such as Vesta or Eros further within our solar system," Liu said. "These planetary bodies have very different environments, but all have the potential to produce water."

The regolith glasses are called agglutinates, and the study reported in Nature Geoscience is the first to identify agglutinates as a new reservoir of OH on the moon—an "unanticipated, abundant reservoir" of OH and water in the lunar regolith, according to the authors.

The researchers analyzed individual grains from Apollo 11 mare soil, Apollo 16 highland soil and Apollo 17 mare soil. The grains included agglutinates and impact glasses.

In addition to Liu and Zhang, authors of the Nature Geoscience report are Yunbin Guan, George Rossman and John Eiler of Caltech and Lawrence Taylor of U-T.

The work was funded in part by NASA cosmochemistry grants to Taylor and Zhang, by support from the Moore Foundation to the Caltech Microanalysis Center, and by a National Science Foundation grant to Rossman. A portion of the study was also supported by U-T's the Planetary Geosciences Institute .

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>