Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar photons drive water off the moon

17.06.2014

Research provides measurements for scientists searching for water in solar system

Water is thought to be embedded in the moon’s rocks or, if cold enough, “stuck” on their surfaces. It’s predominantly found at the poles. But scientists probably won’t find it intact on the sunlit side.


A lunar sample in a ultra-high vacuum system is hit with ultraviolet (157 nm) photons to simulate conditions in space.

New research at the Georgia Institute of Technology indicates that ultraviolet photons emitted by the sun likely cause H2O molecules to either quickly desorb or break apart. The fragments of water may remain on the lunar surface, but the presence of useful amounts of water on the sunward side is not likely.

The Georgia Tech team built an ultra-high vacuum system that simulates conditions in space, then performed the first-ever reported measurement of the water photodesorption cross section from an actual lunar sample. The machine zapped a small piece of the moon with ultraviolet (157 nm) photons to create excited states and watched what happened to the water molecules. They either came off with a cross section of ~ 6 x 10−19 cm2  or broke apart with a cross section of  ~ 5  x 10−19 cm2.. According to the team’s measurements, approximately one in every 1,000 molecules leave the lunar surface simply due to absorption of UV light.

Georgia Tech’s cross section values can now be used by scientists attempting to find water throughout the solar system and beyond.

“The cross section is an important number planetary scientists, astrochemists and the astrophysics community need for models regarding the fate of water on comets, moons, asteroids, other airless bodies and interstellar grains,” said Thomas Orlando, the Georgia Tech professor who led the study.

The number is relatively large, which establishes that solar UV photons are likely removing water from the moon’s surface. This research, which was carried out primarily by former Georgia Tech Ph.D. student Alice DeSimone, indicates the cross sections increase even more with decreasing water coverage. That’s why it’s not likely that water remains intact as H2O on the sunny side of the moon. Orlando compares it to sitting outside on a summer day.

“If a lot of sunlight is hitting me, the probability of me getting sunburned is pretty high,” said Orlando, a professor in the School of Chemistry and Biochemistry and School of Physics. “It’s similar on the moon. There’s a fixed solar flux of energetic photons that hit the sunlit surface, and there’s a pretty good probability they remove water or damage the molecules.“

The result, according to Orlando, is the release of molecules such as H2O, H2 and OH as well as the atomic fragments H and O.   The research is published in two companion articles in the Journal of Geophysical Research: Planets. The first discusses the water photodesorption. The second paper details the photodissociation of water and the  O(3PJ) formation on a lunar impact melt breccia. 

Orlando is the associate director of Georgia Tech’s Center for Space Technology and Research (C-STAR). C-STAR is an interdisciplinary research center that serves to organize, integrate and facilitate the impact of Georgia Tech's space science and space technology research activities. The center brings together a wide range of Georgia Tech faculty, active in space science and space technology research, and functions as the Institute’s focal point for growth of the space industry in the state of Georgia.

This material is based upon work supported by NASA under award number NNX11AP13G. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NASA.

Jason Maderer | Eurek Alert!
Further information:
http://www.news.gatech.edu/2014/06/16/solar-photons-drive-water-moon

Further reports about: NASA UV light astrophysics comets lunar photodesorption photons solar system

More articles from Earth Sciences:

nachricht Expanding tropics pushing high altitude clouds towards poles, NASA study finds
06.05.2016 | NASA/Goddard Space Flight Center

nachricht Underground fungi detected from space
04.05.2016 | Smithsonian Tropical Research Institute

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>