Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar photons drive water off the moon

17.06.2014

Research provides measurements for scientists searching for water in solar system

Water is thought to be embedded in the moon’s rocks or, if cold enough, “stuck” on their surfaces. It’s predominantly found at the poles. But scientists probably won’t find it intact on the sunlit side.


A lunar sample in a ultra-high vacuum system is hit with ultraviolet (157 nm) photons to simulate conditions in space.

New research at the Georgia Institute of Technology indicates that ultraviolet photons emitted by the sun likely cause H2O molecules to either quickly desorb or break apart. The fragments of water may remain on the lunar surface, but the presence of useful amounts of water on the sunward side is not likely.

The Georgia Tech team built an ultra-high vacuum system that simulates conditions in space, then performed the first-ever reported measurement of the water photodesorption cross section from an actual lunar sample. The machine zapped a small piece of the moon with ultraviolet (157 nm) photons to create excited states and watched what happened to the water molecules. They either came off with a cross section of ~ 6 x 10−19 cm2  or broke apart with a cross section of  ~ 5  x 10−19 cm2.. According to the team’s measurements, approximately one in every 1,000 molecules leave the lunar surface simply due to absorption of UV light.

Georgia Tech’s cross section values can now be used by scientists attempting to find water throughout the solar system and beyond.

“The cross section is an important number planetary scientists, astrochemists and the astrophysics community need for models regarding the fate of water on comets, moons, asteroids, other airless bodies and interstellar grains,” said Thomas Orlando, the Georgia Tech professor who led the study.

The number is relatively large, which establishes that solar UV photons are likely removing water from the moon’s surface. This research, which was carried out primarily by former Georgia Tech Ph.D. student Alice DeSimone, indicates the cross sections increase even more with decreasing water coverage. That’s why it’s not likely that water remains intact as H2O on the sunny side of the moon. Orlando compares it to sitting outside on a summer day.

“If a lot of sunlight is hitting me, the probability of me getting sunburned is pretty high,” said Orlando, a professor in the School of Chemistry and Biochemistry and School of Physics. “It’s similar on the moon. There’s a fixed solar flux of energetic photons that hit the sunlit surface, and there’s a pretty good probability they remove water or damage the molecules.“

The result, according to Orlando, is the release of molecules such as H2O, H2 and OH as well as the atomic fragments H and O.   The research is published in two companion articles in the Journal of Geophysical Research: Planets. The first discusses the water photodesorption. The second paper details the photodissociation of water and the  O(3PJ) formation on a lunar impact melt breccia. 

Orlando is the associate director of Georgia Tech’s Center for Space Technology and Research (C-STAR). C-STAR is an interdisciplinary research center that serves to organize, integrate and facilitate the impact of Georgia Tech's space science and space technology research activities. The center brings together a wide range of Georgia Tech faculty, active in space science and space technology research, and functions as the Institute’s focal point for growth of the space industry in the state of Georgia.

This material is based upon work supported by NASA under award number NNX11AP13G. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NASA.

Jason Maderer | Eurek Alert!
Further information:
http://www.news.gatech.edu/2014/06/16/solar-photons-drive-water-moon

Further reports about: NASA UV light astrophysics comets lunar photodesorption photons solar system

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>