Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in solar activity affect local climate

09.12.2010
Most of the current climate models suggest that the sun has only a small effect on the global climate, but there is insufficient knowledge of the processes behind this link. Variations in solar activity could have major significance for regional climate development, according to Lund researcher Raimund Muscheler and his colleagues in the USA and Mexico.

Raimund Muscheler is a researcher at the Department of Earth and Ecosystem Sciences at Lund University in Sweden. In the latest issue of the journal Science, he and his colleagues have described how the surface water temperature in the tropical parts of the eastern Pacific varied with the sun’s activity between 7 000 and 11 000 years ago (early Holocene). Contrary to what one might intuitively believe, high solar activity had a cooling effect in this region.

“It is perhaps a similar phenomenon that we are seeing here today”, says Raimund Muscheler. “Last year’s cold winter in Sweden could intuitively be seen to refute global warming. But the winter in Greenland was exceptionally mild. Both phenomena coincide with low solar activity and the sun’s activity probably influences the local climate variations.”

Today there is a lot of debate about whether the sun’s activity could have influenced the earth’s climate over thousands or millions of years.

“The key processes in this influence are still mostly unclear. This is why the present climate models probably do not include the full effect of solar activity”, says Raimund Muscheler.

By reconstructing surface water temperatures from plankton stored in a sediment core taken from the seabed off the west coast of Baja California Sur, Mexico, researchers have now made new findings. The results suggest that solar activity has influenced the sea’s surface water temperature by changing local circulation processes in the sea. Previous studies have shown that the surface water temperature in the tropical Pacific Ocean is linked to atmospheric and seawater circulation through the regional weather phenomena El Niño and El Niña.

“We know that El Niño brings a warmer climate, while El Niña brings a cooler climate in the eastern part of the Pacific Ocean”, says Raimund Muscheler. “If we presume that this connection existed during the early Holocene, this means that there could be a link between solar activity and El Niño/El Niña on long time scales.”

In his research, Raimund Muscheler works to reconstruct previous changes in solar activity by studying how cosmogenic isotopes, for example of beryllium-10 and carbon-14, have been stored in both ice cores and annual rings in trees. Cosmogenic isotopes are formed in the atmosphere as a result of cosmic radiation from space. When solar activity is high, a small amount of the cosmic radiation reaches the atmosphere and thus a small number of cosmogenic isotopes are formed and stored.

“This is the best and most reliable method we have to reconstruct solar activity”, says Raimund Muscheler.

Raimund Muscheler, researcher in quaternary geology, Lund University. Raimund.Muscheler@geol.lu.se, tel. +46 46 222 04 54

Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se; +46-46 222 7186

Lena Björk Blixt | idw
Further information:
http://www.vr.se
http://www.sciencemag.org/search?site_area=sci&y=9&fulltext=Raimund%20Muscheler&x=37&submit=yes

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>