Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil contributes to climate warming more than expected

09.02.2010
Finnish research shows a flaw in climate models

The climatic warming will increase the carbon dioxide emissions from soil more than previously estimated. This is a mechanism that will significantly accelerate the climate change. Already now the carbon dioxide emissions from soil are ten times higher than the emissions of fossil carbon. A Finnish research group has proved that the present standard measurements underestimate the effect of climate warming on emissions from the soil.

The error is serious enough to require revisions in climate change estimates. In all climate models, the estimates of emissions from soil are based on measurements made using this erroneous method. Climate models must be revised so that the largest carbon storage of the land ecosystems will be estimated correctly. The sensitivity of the soil carbon storage to climatic warming will endanger the carbon sink capacity of forests in the future

Research on the effect of climate change on the carbon dioxide release from soil is seriously studied by many research groups around the world. It is known that emissions from soil have a significant influence on the carbon dioxide concentration in the atmosphere and thereby on the future climate. However, these studies are usually based on short-term measurements of the carbon dioxide production of soil. According to the results of the Finnish research group, such a method gives systematically biased estimates on the effects of climate change on the emissions.

The carbon dioxide measured in short-term experiments comes from carbon compounds that are decomposed quickly, but such compounds are not abundant in the soil. Based on radiocarbon measurements, the Finnish research group showed that the more slowly decomposing compounds are much more sensitive to the rise of temperature and that such compounds are abundant in the soil.

The studies in boreal forests showed that carbon dioxide emissions from the soil will be up to 50 percent higher than those suggested by the present mainstream method, if the mean temperature will rise as it is estimated, that is, by 5 centigrades before the end of this century, and if the carbon flow to the soil will not increase. An increase of the growth of forest biomass by 100-200 % would compensate the increasing releases from the soil. According to the previous erroneous estimates, a 70-80 % increase of growth would be enough. The difference is significant. Even according to the highest estimates, the growth of forests will only increase by 60 % if the mean temperatures will rise by 5 centigrades.

Carbon storage in soil will decrease, emissions from forests will increase

According to the results, the climatic warming will inevitably lead to smaller carbon storage in soil and to higher carbon dioxide emissions from forests. These emissions will further warm up the climate, and as a consequence the emissions will again increase, This interaction between the carbon dioxide emissions from soil and the warming of climate will accelerate the climate change.

The present climate models underestimate the increase of carbon dioxide emissions from soil in a warmer climate. Thereby they also underestimate the accelerating impact of the largest carbon storage in forests on the climate change. This result is also essential with respect to the climate policy measures concerning forests. The carbon storage of forests is, more than previously assumed, sensitive to climatic warming, and the carbon sink capacity of forests is endangered. To maintain the carbon storage, the accumulation of organic material in forests should increase. However, this is not compatible with the present bioenergy goals for forests and with the more and more intensive harvesting of biomass in forests.

The research was carried out as cooperation between the Finnish Environment Institute, the Finnish Forest Research Institute and the Dating Laboratory of the Finnish Museum of Natural History at the University of Helsinki. The research was funded by the Academy of Finland and the Maj and Tor Nessling Foundation.

Erkki Kauhanen | alfa
Further information:
http://www.metla.fi/tiedotteet/2010/2010-02-08-soil-climate.htm

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>