Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Snows Of Kilimanjaro shrinking rapidly, and likely to be lost

The remaining ice fields atop famed Mount Kilimanjaro in Tanzania could be gone within two decades and perhaps even sooner, based on the latest survey of the ice fields remaining on the mountain .

The findings indicate a major cause of this ice loss is very likely to be the rise in global temperatures. Although changes in cloudiness and precipitation may also play a role, they appear less important, particularly in recent decades.

The first calculation of ice volume loss indicates that from 2000 to 2007, the loss by thinning is now roughly equal to that by shrinking.

These predictions, published in the journal Proceedings of the National Academy of Sciences, are among the latest dramatic physical evidence of global climate change.

Paleoclimatologist Lonnie Thompson, professor of earth sciences at Ohio State University, and his colleagues amassed a trail of data showing the rapid loss of ice atop Africa's highest mountain:

85 percent of the ice that covered the mountain in 1912 had been lost by 2007, and 26 percent of the ice there in 2000 is now gone;

A radioactive signal marking the 1951-52 "Ivy" atomic tests that was detected in 2000 1.6 meters (5.25 feet) below the surface of the Kilimanjaro ice is now lost, with an estimated 2.5 meters (8.2 feet) missing from the top of the current ice fields;

The presence of elongated bubbles trapped in the frozen ice at the top of one of the cores shows that surface ice has melted and refrozen. There is no evidence of sustained melting anywhere in the rest of the core that dates back 11,700 years;

Even 4,200 years ago, a drought in that part of Africa that lasted about 300 years and left a thick (about 1-inch) dust layer, was not accompanied by any evidence of melting. These observations confirm that the current climate conditions over Mount Kilimanjaro are unique over the last 11 millennia.

"This is the first time researchers have calculated the volume of ice lost from the mountain's ice fields," said Thompson, a research scientist with Ohio State's Byrd Polar Research Center. "If you look at the percentage of volume lost since 2000 versus the percentage of area lost as the ice fields shrink, the numbers are very close."

While the loss of mountain glaciers is most apparent from the retreat of their margins, Thompson said an equally troubling effect is the thinning of the ice fields from the surface.

The summits of both the Northern and Southern Ice Fields atop Kilimanjaro have thinned by 1.9 meters (6.2 feet) and 5.1 meters (16.7 feet) respectively. The smaller Furtwangler Glacier, which was melting and water-saturated in 2000 when it was drilled, has thinned as much as 50 percent between 2000 and 2009.

"It has lost half of its thickness," Thompson explained. "In the future, there will be a year when Furtwängler is present and by the next year, it will have disappeared . The whole thing will be gone!"

Thompson's team drilled six cores through Kilimanjaro's ice fields in 2000 and published their findings in the journal Science two years later. That work established a detailed baseline against which more recent data can be compared.

Thompson said the changes occurring on Mount Kilimanjaro mirror those on Mount Kenya and the Rwenzori Mountains in Africa, as well as tropical glaciers high in the South American Andes and in the Himalayas.

"The fact that so many glaciers throughout the tropics and subtropics are showing similar responses suggests an underlying common cause. The increase of Earth's near surface temperatures, coupled with even greater increases in the mid- to upper-tropical troposphere, as documented in recent decades, would at least partially explain the observed widespread similarity in glacier behavior," he said.

Along with Thompson, Ellen Mosley-Thompson, Henry Brecher and Bryan Mark, all with the Byrd Polar Research Center, and Douglas Hardy from the University of Massachusetts all contributed to the study.

The research was sponsored primarily by the Paleoclimate Program of the National Science Foundation with additional support from the Climate, Water and Carbon (CWC) Program at Ohio State University.

Lonnie Thompson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>