Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snow has thinned on Arctic sea ice

13.08.2014

Scientists have been tracking snow depth on Arctic sea ice for almost a century, using research stations on drifting ice floes and today’s radar-equipped aircraft.

Now that people are more concerned than ever about what is happening at the poles, a new study confirms that snow has thinned significantly in the Arctic, particularly on sea ice in western waters near Alaska.


Researcher Melinda Webster uses a probe to measure snow depth and verify airborne data. She is walking on sea ice near Barrow, Alaska in March 2012. Her backpack holds electronics that power the probe and record the data. Chris Linder / Univ. of Washington

The new assessment, accepted for publication in the Journal of Geophysical Research: Oceans, a publication of the American Geophysical Union, combines data collected by ice buoys and NASA aircraft with historic data from ice floes staffed by Soviet scientists from the late 1950s through the early 1990s to track changes over decades.

Historically, Soviets on drifting sea ice used meter sticks and handwritten logs to record snow depth. Today, researchers on the ground use an automated probe similar to a ski pole to verify the accuracy of airborne measurements.

... more about:
»Alaska »Arctic »NASA »Physics »airborne »spring

“When you stab it into the ground, the basket moves up, and it records the distance between the magnet and the end of the probe,” said Melinda Webster, a graduate student in oceanography at the University of Washington (UW), Seattle, and first author on the study. “You can take a lot of measurements very quickly. It’s a pretty big difference from the Soviet field stations.”

Webster verified the accuracy of airborne data taken during a March 15, 2012 NASA flight over the sea ice near Barrow, Alaska. The following day Webster followed the same track in minus 30-degree temperatures while stabbing through the snow every two to three steps.

The authors compared data from NASA airborne surveys, collected between 2009 and 2013, with U.S. Army Corps of Engineers buoys frozen into the sea ice, and earlier data from Soviet drifting ice stations in 1937 and from 1954 through 1991. Results showed that snowpack has thinned from 35 centimeters to 22 centimeters (14 inches to 9 inches ) in the western Arctic, and from 33 cm to 14.5 cm (13 in to 6 in) in the Beaufort and Chukchi seas, west and north of Alaska.

That’s a decline in the western Arctic of about a third, and snowpack in the Beaufort and Chukchi seas measures less than half as thick in spring in recent years compared to the average Soviet-era records for that time of year.

“Knowing exactly the error between the airborne and the ground measurements, we’re able to say with confidence, Yes, the snow is decreasing in the Beaufort and Chukchi seas,” said co-author Ignatius Rigor, an oceanographer at the UW’s Applied Physics Laboratory.

UW and NASA researchers led the study. The authors speculate the reason for the thinner snow, especially in the Beaufort and Chukchi seas, may be that the surface freeze-up is happening later in the fall so the year’s heaviest snowfalls, in September and October, mostly fall into the open ocean.

What thinner snow will mean for the ice is not certain. Deeper snow actually shields ice from cold air, so a thinner blanket may allow the ice to grow thicker during the winter. On the other hand, thinner snow cover may allow the ice to melt earlier in the springtime.

Thinner snow has other effects, Webster said, for animals that use the snow to make dens, and for low-light microscopic plants that grow underneath the sea ice and form the base of the Arctic food web.

The new results support a 15-year-old study, also led by the University of Washington, in which Russian and American scientists first analyzed the historic Arctic Ocean snow measurements. That paper detected a slight decline in spring snow depth that the authors believed, even then, was due to a shorter ice-covered season.

“This confirms and extends the results of that earlier work, showing that we continue to see thinning snow on the Arctic sea ice,” said Rigor, who was also a co-author on the earlier paper.

The recent fieldwork was part of NASA’s Operation IceBridge program, which is using aircraft to track changes while NASA prepares to launch a new ice-monitoring satellite in 2017. The team conducted research flights in spring 2012 as part of a larger program to monitor changes in the Arctic.

The research was supported by NASA and the U.S. Interagency Arctic Buoy Program.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

Notes for Journalists:

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014JC009985/abstract

Or, you may order a copy of the final paper by emailing your request to Peter Weiss at pweiss@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Interdecadal changes in snow depth on Arctic sea ice”

Authors:

Melinda A. Webster: Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA;

Ignatius G. Rigor: Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA;

Son V. Nghiem: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA;

Nathan T. Kurtz: Hydrospheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA;

Sinead L. Farrell: Hydrospheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA;

Donald K. Perovich: US Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, USA;

Matthew Sturm: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Contact information for authors:

Melinda Webster: melindaw@uw.edu . Webster is on travel until late August but will have email access at least once a day.

Ignatius Rigor: +1 (206) 685-2571, ignatius@apl.washington.edu 

Peter Weiss | American Geophysical Union
Further information:
http://news.agu.org/press-release/snow-has-thinned-on-arctic-sea-ice/

Further reports about: Alaska Arctic NASA Physics airborne spring

More articles from Earth Sciences:

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>