Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snow has thinned on Arctic sea ice

13.08.2014

Scientists have been tracking snow depth on Arctic sea ice for almost a century, using research stations on drifting ice floes and today’s radar-equipped aircraft.

Now that people are more concerned than ever about what is happening at the poles, a new study confirms that snow has thinned significantly in the Arctic, particularly on sea ice in western waters near Alaska.


Researcher Melinda Webster uses a probe to measure snow depth and verify airborne data. She is walking on sea ice near Barrow, Alaska in March 2012. Her backpack holds electronics that power the probe and record the data. Chris Linder / Univ. of Washington

The new assessment, accepted for publication in the Journal of Geophysical Research: Oceans, a publication of the American Geophysical Union, combines data collected by ice buoys and NASA aircraft with historic data from ice floes staffed by Soviet scientists from the late 1950s through the early 1990s to track changes over decades.

Historically, Soviets on drifting sea ice used meter sticks and handwritten logs to record snow depth. Today, researchers on the ground use an automated probe similar to a ski pole to verify the accuracy of airborne measurements.

... more about:
»Alaska »Arctic »NASA »Physics »airborne »spring

“When you stab it into the ground, the basket moves up, and it records the distance between the magnet and the end of the probe,” said Melinda Webster, a graduate student in oceanography at the University of Washington (UW), Seattle, and first author on the study. “You can take a lot of measurements very quickly. It’s a pretty big difference from the Soviet field stations.”

Webster verified the accuracy of airborne data taken during a March 15, 2012 NASA flight over the sea ice near Barrow, Alaska. The following day Webster followed the same track in minus 30-degree temperatures while stabbing through the snow every two to three steps.

The authors compared data from NASA airborne surveys, collected between 2009 and 2013, with U.S. Army Corps of Engineers buoys frozen into the sea ice, and earlier data from Soviet drifting ice stations in 1937 and from 1954 through 1991. Results showed that snowpack has thinned from 35 centimeters to 22 centimeters (14 inches to 9 inches ) in the western Arctic, and from 33 cm to 14.5 cm (13 in to 6 in) in the Beaufort and Chukchi seas, west and north of Alaska.

That’s a decline in the western Arctic of about a third, and snowpack in the Beaufort and Chukchi seas measures less than half as thick in spring in recent years compared to the average Soviet-era records for that time of year.

“Knowing exactly the error between the airborne and the ground measurements, we’re able to say with confidence, Yes, the snow is decreasing in the Beaufort and Chukchi seas,” said co-author Ignatius Rigor, an oceanographer at the UW’s Applied Physics Laboratory.

UW and NASA researchers led the study. The authors speculate the reason for the thinner snow, especially in the Beaufort and Chukchi seas, may be that the surface freeze-up is happening later in the fall so the year’s heaviest snowfalls, in September and October, mostly fall into the open ocean.

What thinner snow will mean for the ice is not certain. Deeper snow actually shields ice from cold air, so a thinner blanket may allow the ice to grow thicker during the winter. On the other hand, thinner snow cover may allow the ice to melt earlier in the springtime.

Thinner snow has other effects, Webster said, for animals that use the snow to make dens, and for low-light microscopic plants that grow underneath the sea ice and form the base of the Arctic food web.

The new results support a 15-year-old study, also led by the University of Washington, in which Russian and American scientists first analyzed the historic Arctic Ocean snow measurements. That paper detected a slight decline in spring snow depth that the authors believed, even then, was due to a shorter ice-covered season.

“This confirms and extends the results of that earlier work, showing that we continue to see thinning snow on the Arctic sea ice,” said Rigor, who was also a co-author on the earlier paper.

The recent fieldwork was part of NASA’s Operation IceBridge program, which is using aircraft to track changes while NASA prepares to launch a new ice-monitoring satellite in 2017. The team conducted research flights in spring 2012 as part of a larger program to monitor changes in the Arctic.

The research was supported by NASA and the U.S. Interagency Arctic Buoy Program.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

Notes for Journalists:

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014JC009985/abstract

Or, you may order a copy of the final paper by emailing your request to Peter Weiss at pweiss@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Interdecadal changes in snow depth on Arctic sea ice”

Authors:

Melinda A. Webster: Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA;

Ignatius G. Rigor: Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA;

Son V. Nghiem: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA;

Nathan T. Kurtz: Hydrospheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA;

Sinead L. Farrell: Hydrospheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA;

Donald K. Perovich: US Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, USA;

Matthew Sturm: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

Contact information for authors:

Melinda Webster: melindaw@uw.edu . Webster is on travel until late August but will have email access at least once a day.

Ignatius Rigor: +1 (206) 685-2571, ignatius@apl.washington.edu 

Peter Weiss | American Geophysical Union
Further information:
http://news.agu.org/press-release/snow-has-thinned-on-arctic-sea-ice/

Further reports about: Alaska Arctic NASA Physics airborne spring

More articles from Earth Sciences:

nachricht The most accurate optical single-ion clock worldwide
10.02.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Unusual cold spell in the stratosphere creates conditions for severe ozone depletion in the Arctic
10.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>