Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snail fossils suggest semiarid eastern Canary Islands were wetter 50,000 years ago

29.10.2009
Fossil land snail shells found in ancient soils on the subtropical eastern Canary Islands show that the Spanish archipelago off the northwest coast of Africa has become progressively drier over the past 50,000 years.

Isotopic measurements performed on fossil land snail shells resulted in oxygen isotope ratios that suggest the relative humidity on the islands was higher 50,000 years ago, then experienced a long-term decrease to the time of maximum global cooling and glaciation about 15,000 to 20,000 years ago, according to new research by Yurena Yanes, a post-doctoral researcher, and Crayton J. Yapp, a geochemistry professor, both in the Roy M. Huffington Department of Earth Sciences at Southern Methodist University in Dallas, Texas.

With subsequent post-glacial climatic fluctuations, relative humidity seems to have oscillated somewhat, but finally decreased even further to modern values.

Consequently the eastern Canary Islands experienced an overall increase in dryness during the last 50,000 years, eventually yielding the current semiarid conditions. Today the low-altitude eastern islands are characterized by low annual rainfall and a landscape of short grasses and shrubs, Yanes says.

The research advances understanding of the global paleoclimate during an important time in human evolution, when the transition from gathering and hunting to agriculture first occurred in the fertile Middle East and subsequently spread to Asia, North Africa and Europe.

"In the Canary Archipelago, land snails are one of the rare 'continuous' records of paleoclimatic conditions over the last 50,000 years," Yanes says. "The results of this study are of great relevance to biologists and paleontologists investigating the evolution of plants and animals linked to climatic fluctuation in the islands."

The researchers' isotopic evidence reflects changing atmospheric and oceanic circulation associated with the waxing, waning and subsequent disappearance over the past 50,000 years of vast ice sheets at mid- to high latitudes on the continents of the Northern Hemisphere.

The research also is consistent with the observed decline in diversity of the highly moisture-sensitive land snails.

Land snail shells are abundant and sensitive to environmental change and as fossils they are well-preserved. Measurement of variations in oxygen isotope ratios of fossil shells can yield information about changes in ancient climatic conditions.

The shells are composed of the elements calcium, oxygen and carbon, which are combined to form a mineral known as aragonite. Oxygen atoms in aragonite are not all exactly alike. A small proportion of those atoms is slightly heavier than the majority, and these heavier and lighter forms of oxygen are called isotopes of oxygen.

Small changes in the ratio of heavy to light isotopes can be measured with a high degree of accuracy and precision. Variations in these ratios are related to climatic variables, including relative humidity, temperature and the oxygen isotope ratios of rainwater and water vapor in the environments in which land snails live.

Yanes presented the research at a scientific session of the 2009 annual meeting of The Geological Society of America in Portland, Ore., Oct. 18-21. The research was funded by Spain's Ministry of Science and Innovation and the National Science Foundation. For more information go to www.smuresearch.com

SMU: A private university located in the heart of Dallas, SMU is building on the vision of its founders, who imagined a distinguished center for learning emerging from the spirit of the city. Today, nearly 11,000 students benefit from the national opportunities and international reach afforded by the quality of SMU's seven degree-granting schools.

Kim Cobb | EurekAlert!
Further information:
http://www.smu.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>